Liquid Cooling Commissioning Lessons Learned
Lawrence Livermore National Laboratory (LLNL)

Supercomputing 2013
November 17, 2013

Marriann Silveira, PE
LLNL’s Liquid Cooled Systems

- **Sequoia**
 - IBM Blue Gene*/Q machine
 - 98,304 nodes
 - 1,572,864 cores
 - 20 PF, 3rd on Top 500 ranking – June 2013
 - 96 racks
 - 91% liquid cooled
 - 30 gpm at 62 F
 - 9% air cooled
 - 1700 cfm at 70 F

- **Vulcan**
 - IBM Blue Gene*/Q machine
 - 24,576 nodes
 - 393,216 cores
 - 5 PF, 8th on Top 500 ranking – June 2013
 - 24 racks
 - 91% liquid cooled
 - 30 gpm at 62 F
 - 9% air cooled
 - 1700 cfm at 70 F

* Copyright 2013 by International Business Machine Corporation
Sequoia/Vulcan
Lessons Learned - Case Study#1
Water Quality Issues

- Water quality requirements are specified by the vendor
- Requirements were inconsistent in documentation
 - Resistivity and conductivity were in direct conflict with one another
- Vendor was unsure of correct requirement
- Demineralized water (DW) was determined to be the correct source and was used to flush and fill the system
 - The facility only has a 1” DW line available
- City water (CW) was ultimately used to flush and fill the system and is currently the water used in the system
- These issues resulted in schedule delays and unforeseen additional rework
Lessons Learned - Case Study#2
Water Utility Source Issues

- LLNL has 2 sources of CW, Hetch Hetchy water and Zone 7
- Hetch Hetchy is a direct clean water supply from Yosemite National Park
- Zone 7 is a local ground water source and is undesirable
- Approval to start Vulcan construction was delayed and schedule was condensed
- Annual maintenance of Hetch Hetchy coincided with flush and fill of Vulcan system
- Contingency plan was to utilize portable tanks and pump skid filled with Hetch Hetchy water
- Contractor finished construction early
- System was filled with direct Hetch Hetchy and portable tanks were not needed.
Questions

Marriann Silveira
(925)423-5049
silveira1@llnl.gov