
Evaluation of NoSQL and Array Databases for Scientific
Applications

Lavanya Ramakrishnan, Pradeep K. Mantha, Yushu Yao, Richard S. Canon

Lawrence Berkeley National Lab
Berkeley, CA 94720

[lramakrishnan,pkmantha,yyao,scanon]@lbl.gov

ABSTRACT
Scientific users are increasingly considering the use of NoSQL
and array databases for storing metadata and data. These
databases offer various advantages including support for real-
time changing schema and performance optimizations for
specific operations. However, there is a limited understand-
ing of the strengths and weaknesses of these databases for
scientific applications. In this paper, we present an eval-
uation using standard benchmarks (Yahoo! Cloud Serving
Benchmark) and two scientific data sets. Our results indi-
cate that careful understanding of the distribution of the
workload as well as aspects such as client side tools and
parameters need to be considered to get the optimal perfor-
mance from these databases.

1. INTRODUCTION
Scientific discoveries for important challenges facing our

society require federation or integration of data from multi-
ple research groups and disciplines. The data infrastructure
must be able to accommodate diverse data-types and for-
mats from diverse experiment facilities, models and sources.

Today, data and metadata is primarily stored in file sys-
tems and in rare cases in relational databases [14]. Scalable
file systems are critical as an underlying software layer, but
these are not sufficient for user-level data management stor-
age, nor do they offer an adequate interface for queries and
data analyseos. Also, it is often difficult to attach schema,
or meaning, to the data beforehand and the schema and
metadata tends to evolve over time. Thus, datastores need
to accommodate real-time changes to the structure of the
data while making the data searchable on any attribute.

Cloud applications are increasingly using schema-less (also
referred to as Not Only SQL or NoSQL) datastores–which
enable capture of semi-structured data and allow attribute-
based searches. Increasingly scientific applications are inves-
tigating the use of NoSQL databases for their needs (e.g.,
the Materials Project [9], data from the Advanced Light

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Source [12]) and/or array databases. NoSQL databases ad-
dress many of the needs of a data store for storing less struc-
tured and evolving data schemas. Current implementations
of schema-less databases are based on the ideas proposed by
Amazon (Dynamo) [6] and Google (Bigtable) [3]. Similarly,
array databases provide performance optimizations for array
operations. However, there is a limited understanding of the
strengths and weaknesses of these new class of databases.

In this paper, we provide an evaluation of existing cloud
schema-less and array databases for scientific data use. For
our initial evaluation, we have selected MongoDB [11], Cas-
sandra [2], HBase [10], and SciDB [1, 13]. Specifically, our
evaluation includes:

• A comparison of Cassandra, HBase and MongoDB us-
ing the Yahoo! Cloud Serving Benchmark (YCSB)

• A comparison of Cassandra, SciDB and PostgresSQL
using two scientific data sets

• Investigation of the impact of various factors impacting
performance in the context of Cassandra

The rest of the paper is organized as follows. In Section 2,
we discuss the methodology of our evaluation and detail re-
sults in Section 3. We discuss related work and conclusions
in Sections 4 and 5 respectively.

2. METHODOLOGY
In this section, we describe our experiment setup including

the databases and the workload and data sets.

2.1 NoSQL and Array Databases
Schema-less databases are typically classified as document-

oriented, key-value, and graph-based. A document-oriented
database stores, retrieves and manages semi-structured or
document-oriented information. Key-value stores use a key-
value pair. HBase, part of the Hadoop ecosystem and Cas-
sandra, initially developed by Facebook are key-value stores.
MongoDB, developed and supported by 10gen, is a document-
oriented store. We Cassandra - 1.1.2, MongoDB - 2.4.5 and
HBase - 0.20.3 for our evaluation.

SciDB is an array-based database that has recently gained
traction for scientific data that can be represented in an ar-
ray model. Our selection criteria are based on applicability
to scientific data, feasibility, active development, and com-
munity support. We use SciDB 13.3 in our evalution.

The goal of our evaluation is not necessarily to determine
the best product, but rather to understand the state of the

art and the application of each class of schema-less database
to scientific data.

2.2 Workloads and Data Sets
First, we perform a comparison using the Yahoo! Cloud

Serving Benchmark (YCSB) framework. YCSB facilitates
the performance comparisons of the new generation of cloud
data serving systems. The workload supports a number of
different workloads from update heavy, read heavy, read
only, read latest and short ranges (Table 2.3). The work-
load consists of 100 million records where each record is 1
KB (10 fields by 100 Bytes).

Second, we use two scientific data sets to compare the per-
formance of Cassandra and SciDB with PostgresSQL. The
data sets are from bioinformatics and astronomy.

The first data set consists of non-redundant (nr) protien
sequences from bioinformatics. The database had 16 million
entries where each entry had the following fields: sequence
id, sequence, checksum. We used the sequence id as the key.
The query used for our evaluation fetches all fields based on
a sequence id.

The second data set is from astronomy. The data set
contains a collection of 55K spectrums produced from sim-
ulation of different supernova with different input param-
eters. Each spectrum contains 2500 wavelength steps and
two record types. The data set contains 275 million records.
The primary key is a compound key consisting of spectrum
id, wavelength id and record type. The query used calcu-
lates the Chi-square distance between the given observed
spectrum to every spectrum in the set, and returns the ID
of the spectrum that has minimal Chi-square distance.

2.3 Machines
All experiments were run on the Jesup testbed at National

Energy Research Scientific Computing Center (NERSC). Je-
sup is a 160 node testbed cluster, used to explore emerging
hardware and software technologies. The nodes consist of
quad-core Intel Xeon X5550 (“Nehalem”) 2.67 GHz proces-
sors (eight cores/node) with 24 GB of memory per node.

D E F G NR

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

Workload

Cassandra

HBase

MongoDB

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

 18,000

A B C

Figure 1: The figure shows the comparison of per-
formance with different workload types (Table 2.3)
with the different NoSQL databases.

3. RESULTS
We evaluate the various NoSQL stores and SciDB using

the YCSB benchmarks and two scientific data sets.

3.1 YCSB

Workload A: Up-
date heavy work-
load

Mix of 50/50 reads and writes.
Zipifan

Workload B: Read
mostly workload

95/5 reads/write mix. Zipifan

Workload C: Read
only

100% read. Zipifan

Workload D: Read
latest workload

New records are inserted, and
the most recently inserted
records are the most popular.
(read/update/insert ratio:
95/0/5).Zipifan

Workload E: Short
ranges

Short ranges of records are
queried, instead of individual
records. (read/update/insert
ration: 95/0/5) Uniform

Workload F: Read-
modify-write

The client will read a record,
modify it, and write back the
changes. (read/read-modify-
write ration: 50/50). Zipifian

Workload G: Cus-
tom workload

100% write

Workload NR Record size matching the bioin-
formatics workoad. Read only
similar to Workload C

Table 1: The table shows the configuration of the
YCSB workloads

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d
 (

L
o

g
 s

ca
le

)

Number of data nodes

SciDB

Cassandra

 1

 10

 100

 1,000

 10,000

 100,000

1 12

Figure 2: The figure shows the comparison of Cas-
sandra and SciDB with the bioinformatics data set.
Cassandra provides higher transactions/second than
SciDB at one node. But the difference is significant
when we scale to 12 nodes.

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

Number of data nodes

SciDB

Cassandra

PostgreSQL

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1 12

Figure 3: The figure shows the comparison of Cas-
sandra, PyCassa and PostgresSQL for the astron-
omy data sets. The array-based queries give supe-
rior performance with SciDB.

 60

 80

 100

0.50 4 8

Q
u

er
y

 t
im

e
in

 s
ec

o
n

d
s

percentage of queries (0.5% queries of input data per thread/client)

3.84 M Reads

1 DN

6 DNs

12 DNs

 0

 20

 40

(a) 25% of entire data set

 60

 80

 100

0.50 4 8

Q
u

er
y

 t
im

e
in

 s
ec

o
n

d
s

percentage of queries (0.5% queries of input data per thread/client)

7.68 M Reads

1 DN

6 DNs

12 DNs

 0

 20

 40

(b) 50% of entire data set

 60

 80

 100

0.50 4 8

Q
u

er
y

 t
im

e
in

 s
ec

o
n

d
s

percentage of queries (0.5% queries of input data per thread/client)

11.53 M Reads

1 DN

6 DNs

12 DNs

 0

 20

 40

(c) 75% of entire data set

 60

 80

 100

0.50 4 8
Q

u
er

y
 t

im
e

in
 s

ec
o

n
d

s

percentage of queries (0.5% queries of input data per thread/client)

15.38 M Reads

1 DN

6 DNs

12 DNs

 0

 20

 40

(d) 100% of entire data set

Figure 6: The figure compares the effects of varying database size with Cassandra-Cli tools.

 140,000

32 64 128 256 512

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

Number of client threads

YCSB

Pycassa

Cassandra Client

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

(a)

Figure 4: The figure compares the impact of differ-
ent client side tools (YCSB, PyCassa and Cassan-
dra Cli) in a case where the number of records in
database and the records queried are identical.

 40,000

 50,000

 60,000

 70,000

 80,000

1 2 4 8 12

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

Number of data nodes

YCSB

Pycassa

Bulk Loader

 0

 10,000

 20,000

 30,000

(a)

Figure 5: The figure compares the loading time with
YCSB and PyCassa. In all cases 16 million opera-
tions are performed and 32 client threads/node are
used

Number of data nodes

 0.20

 0.40

 0.60

 0.80

 1.00

1 12

T
im

e
 i

n
 m

il
li

 s
e
c
o
n
d
s

 0.00

(a)

Figure 7: The figure shows the performance of Cas-
sandra when querying for missing reads. The time
for a query increases with the number of data nodes
when you query for missing records.

Number of client threads

1 DN

2 DNs

4 DNs

6DNs

8 DNs

10 DNs

12 DNs

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

32 64 128 256 512

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

(a)

Figure 8: The figure shows the effect of increasing
data nodes. The effective throughput from adding
additional nodes is evident when there are a large
number of concurrent client threads.

Figure 1 shows the comparison of MongoDB, HBase and
Cassandra using the standard YCSB benchmarks. Mon-
goDB does better than Cassandra and HBase for the ready-
only workload (workload C). Cassandra shows over 8 × the
performance of the other databases for Workload A which
has 50% reads and 50% writes. Cassandra shows between 3
× and 5 × the performance of the other databases with
workloads B and D where reads dominate the workload.
Cassandra does only slightly better than the other databases
with short range queries and read, modify and write queries
(workloads E and F). Cassandra does about 2 × better than
the other databases with the write-only workload (workload
G).

In addition, we also configured YCSB with a data set
that is similar to our bioinformatics sequence data (marked
as NR in figure). We matched the record size, fields and
record count to be identical to our bioinformatics data set.
The workload shows similar trends as workload C since our
worload focussed only on the queries/reads.

3.2 Scientific Data Sets
Bioinformatics data. Figure 2 shows a comparison of
Cassandra and SciDB with the NR sequence data where the
Y-axis is in log scale. SciDB is able to provide only about
100 transactions/second for such queries and thus Cassandra
provides significantly higher performance.
Astronomy data. Figure 3 shows the comparison of Cas-
sandra, PyCassa and PostgresSQL for the astronomy data
set. SciDB is specifically designed to handle array process-
ing and hence SciDB gives the best performance at one node
and is over 1.5 × faster than Cassandra at 12 nodes.

3.3 Miscellaneous
From our early experiments, Cassandra provided the best

performance for a wide range of workload types. Thus, we
performed additional experiments with Cassandra to under-
stand a number of other characteristics of NoSQL databases.

Client Tools. We initially started out using Cassandra-Cli
tools which is a very basic interactive command line inter-
face. However, we noticed that the performance we were get-
ting was well below the advertised performance. We shifted
to PyCassa which is the Python client library for Cassan-
dra. Figure 4 shows the comparison of the client side tools
at 12 data nodes with the bioinformatics data set. PyCassa
perfoms better than Cli and is almost 1.5 × at 512 client
threads. Finally, we used the YCSB Java client tool to gen-
erate data sets similar to the the bioinformatics workload
and the throughput achieved through this is even higher es-
pecially at increased number of client threads. This is prob-
ably due to known drawbacks in Python based tools due to
the Global Intepreter Lock, etc compared to Java.

Database loading. Figure 5 shows our experience with
database loading using various tools with varying data nodes.
In each case, we performed 16 million operations using 32
client threads on a single node. On a single data node,
the PyCassa client perfoms slightly better than using YCSB
client tools (i.e., Java based client tools). However, as the
number of data nodes increases, the YCSB client tools per-
form better than PyCassa. The bulk loader tool does not
support multiple threads at this time and performed slower
than the other tools.

Database size. Figure 6 compares the impact of the vary-
ing database size and the number of client threads. Each
client thread queries 0.5% of the input data set. In this ex-
periment, we vary the amount of data nodes, the number of
clients and the size of the database. Figure 6(a) show that as
the number of client threads are increased on a setup with
a single node, query time takes longer. This trend is also
seen in the other three graphs (Figure 6 (b-d)). Addition-
ally, as the size of the database grows, it impacts the query
times. For example, when only 3.84 million sequence reads
are loaded, the queries complete in the 20-40 second range.
However, at 15.38 million records, query times start at 60
seconds and are sometimes even as high as 90 seconds. The
impact of additional data nodes is a little less clear in this
experiment.

Missing reads. In addition to queries that return success-
ful records, it is important to understand how datastores
perform when querying for items that may not be present in
the database. Figure 7 shows the effect on performance of
Cassandra using PyCassa when querying for items that are
not present in the database. In this experiment, we used a
single client with a single thread on 100% of the data set.
We query for keys that are not present in the data set. In
this case, while queries return in less than one millisecond,
the additional datanodes does impact the performance when
querying for something that is not present in the database.

Data node scaling. Figure 8 shows the effect of adding
additional data nodes. In this case we run 32 threads/client
node. As the number of client thread increases, we see that
the effective throughput increases with the additional data
nodes. For example, at 512 client threads, we see a perfor-
mance improvement of over 3 × when the number of data
nodes were increased from one to 12.

4. RELATED WORK
Cooper et. al [5] describe the YCSB benchmark and com-

pare different NoSQL and relational databases (Cassandra,
HBase, Yahoo!’s PNUTS [4], and MySQL). Dory et al. [8]
study the elastic scalability of MongoDB, HBase and Cas-
sandra on a cloud infrastructure. These studies do not con-
sider the performance achievable specifically for scientific ap-
plications using these frameworks.

Previous work has compared MongoDB and Hive to the
relational database SQL Server PDW using YCSB and TPC-
H DSS [15] benchmarks. Previous works have evaluated
both MongoDB and Hadoop MapReduce performance for
an evolutionary genetic algorithm and other data-intensive
applications [16, 7].

However, there is no prior work that characterizes the per-
formance of NoSQL and array databases with real scientific
applications.

5. CONCLUSIONS
In this paper, we present an evaluation of NoSQL and

array databases using standard benchmarks and scientific
data sets. Our results demonstrate that it is important to
understand the query load distribution and carefully deter-
mine the right parameters to get the optimal performance.
Our results also indicate that the choice of client side tools

might significantly impact performance and must be consid-
ered when making choices.

It is important to note that many of these products are
evolving and the performance obtained is improving. The
performance is also closely tied to specific hardware and/or
software setup. The choice of a database for a particular
project might depend on qualitative factors such as the na-
ture of the data, availability of support for the software.

6. ACKNOWLEDGMENTS
This work was supported by the Director, Office of Sci-

ence, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. The authors would like to thank Elif
Dede.

7. REFERENCES
[1] P. G. Brown. Overview of scidb: large scale array

storage, processing and analysis. In Proceedings of the
2010 international conference on Management of data,
SIGMOD ’10, pages 963–968, New York, NY, USA,
2010. ACM.

[2] Cassandra Website. http://cassandra.apache.org/.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26:4:1–4:26, June 2008.

[4] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, Aug. 2008.

[5] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[6] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, SOSP ’07, pages
205–220, New York, NY, USA, 2007. ACM.

[7] E. Dede, M. Govindaraju, D. Gunter, R. Canon, and
L. Ramakrishnan. Semi-structured data analysis using
mongodb and mapreduce: A performance evaluation.
In Proceedings of the 4th international workshop on
Scientific cloud computing, 2013.

[8] T. Dory, B. Mej́ıas, P. Van Roy, and N.-L. Tran.
Measuring elasticity for cloud databases. In CLOUD
COMPUTING 2011, The Second International
Conference on Cloud Computing, GRIDs, and
Virtualization, pages 154–160, 2011.

[9] D. Gunter, S. Cholia, A. Jain, M. Kocher, K. Persson,
L. Ramakrishnan, S. P. Ong, and G. Ceder.
Community accessible datastore of high-throughput
calculations: Experiences from the materials project.
In 5th workshop on Many-Task Computing on Grids
and Supercomputers (MTAGS), 2012.

[10] HBase Website. http://hbase.apache.org/.

[11] Mongodb website. http://www.mongodb.org/.

[12] L. Ramakrishnan and R. S. Canon. Experiences in
building a data packaging pipeline for tomography
beamline. In Big Data Analytics: Challenges and
Opportunities (BDAC-13) Workshop, Held in
conjunction with Supercomputing, 2013.

[13] SciDB Website. http://www.scidb.org/.

[14] D. Shoshani, Arie amd Rotem. Scientific Data
Management: Challenges, Technology, and
Deployment. CRC Press, 2009.

[15] The TPC-H Benchmark. http://www.tpc.org/tpch/.

[16] A. Verma, X. Llora, S. Venkataraman, D. Goldberg,
and R. Campbell. Scaling ecga model building via
data-intensive computing. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages 1
–8, july 2010.

