
ICEE: Wide-area In Transit Data Processing
Framework For Near Real-Time Scientific

Applications

Jong Y. Choi∗, Kesheng Wu†, Jacky C. Wu†, Alex Sim†,
Qing G. Liu∗, Matthew Wolf‡, CS Chang§, Scott Klasky∗

∗ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
† Lawrence Berkeley National Laboratory, Berkeley, California, USA

‡ Georgia Institute of Technology, Atlanta, Georgia, USA
§ Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA

Abstract—Modern science often requires a large group of
scientists to pool their resources together to make progress.
These collaborations produce huge amounts of data that needs
to be shared across geographically distant locations. In some of
these cases, immediate feedback is needed to control a central
experimental facility, while the collaborators are oceans apart.
To enable this type of distributed collaboration, we explore the
design options for building an in transit data analysis framework
over wide-area network. We implement this framework based on
Adaptive I/O System, ADIOS, and demonstrate the effectiveness
of our implementation with a set of diagnostic data from the
KSTAR experiment. Our tests show that we can complete a large
range of tasks in less than a second over a wide-area network
spanning across the US. To best utilize the compute resources
and meet the time constraints for the system, we also carefully
study the performance characteristics of the key components of
the ICEE system.

I. INTRODUCTION

With increased automation and faster data acquisition sys-
tems, large-scale scientific experiments are generating ever
increasing amount of data. At the same time, more and more
science projects, such as, the Large Hadron Collider (LHC) and
International Thermonuclear Experimental Reactor (ITER), are
international collaborations with many thousands of scientists
from all continents of the world. In all these experiments, a
team of scientists have to be present to monitor the progress
of the on-going data collection, adjust the control settings, and
prevent catastrophic events. Allowing some of these real-time
monitoring and data analysis tasks to be performed remotely
could significantly reduce the burden of travel and encourage
more scientists to provide valuable input. We believe that the
networking and data analysis technologies are fast enough for
us to design and construct a real-time remote data processing
framework over wide-area networks.

There are a number of challenges in building a remote
data analysis framework for a large experimental facility.
Large experiments nowadays can easily generate a few tens of
terabytes a day or petabytes a year. The datasets often contain a
number of different but related measurements. The data records
may be generated at different time and with different intervals,
which makes it difficult to correlate the measurements. Fur-
thermore, a typical analysis task may involve different types

of measurements. In this work, we address the challenges
of minimizing the amount of data retrieved across wide-area
network and reduce the amount of time spent on input and
output to disk storage systems by conducting as much of the
computation in memory as possible.

The research presented in this paper is originally motivated
by the collaborative fusion research conducted at Korea Su-
perconducting Tokamak Advanced Research (KSTAR) facility.
KSTAR is a magnetic confinement fusion device operates
in pulses, known as shots. During a shot, many diagnostic
instruments collect gigabytes of information that needs to be
stored, analyzed and shared among scientists [1]. As in most
pulse based experiments, there are three types of analyses: in-
shot-analysis, between-shot-analysis and post-run-analysis. A
shot in KSTAR can last from a few seconds to 300 seconds
for a full-mode production. Due to the short duration of each
shot, the analyses performed during a shot are aimed to provide
safety critical functions such as monitoring the health of an
experiment to make sure there is no instability occurred. If
an instability is observed, the experiment needs to be aborted
in milliseconds to avoid damage to the experimental facility.
By and large, the challenges come from the amount of data
produced in a long pulse (typically a few terabytes) and the
near real time requirement. Between two consecutive shots,
there is also a relatively longer period of time for between-
shot-analysis (See Fig. 1). KSTAR is planning to provide
such large-scale experimental data in near real-time to external
collaborators remotely located in other countries, including
research labs in USA.

A significant amount of work have been done to address
post-run-analysis challenges. In this work we, instead, focus on
the more challenging first two cases in KSTAR data analyses
due to their stringent QoS requirements, and present a system
to support on-line stream-based wide-area data analysis. Our
system, however, is not limited to KSTAR only and can be
generalized to many remote collaboration cases where near
real-time reponse is a must. More specifically, we consider
a system where large-scale data is generated by experiments
(e.g., KSTAR) or numeric simulations in one site and con-
sumed by analytics in near real-time, running in multiple
remote sites collaboratively (See Fig. 2).



Time

D
at

a 
(b

yt
e)

Shot Between shot Shot

Fig. 1: An example of shots and data streams in fusion experiments.
Three types of analyses can happen: in-shot-analysis, between- shot-
analysis and post-run-analysis.

In building such a near real-time system, we need to
first address two challenges. First, disk I/O needs to be
avoided as much as possible. A common pratice to transfer
data across a wide-area network is to transfer them as files.
Namely, simulations or experiments write data to a local
storage system which are subsequently read and transfered to
remote locations by file transfer tools (such as scp, GridFTP,
etc). On the remote side, the received data is then saved as
files and then consumed by analytic applications. This naive
solution involves four rounds of I/O operations and can easily
result in poor scalability and data readiness. In contrast, this
work designed a solution to process, analyze, summarize and
reduce the data before it reaches the relatively slow disk
storage system, a process known as in transit processing (or
in-flight analysis). In our previous work, known as ADIOS
[2], we developed various solutions supporting such scenarios
and observed much improved performance. We leverage our
IO solution, ADIOS, in order to increase the data handling
capability for collaborative scientific applications [3].

Secondly, we need to keep in mind that data can go onto
long-haul wide-area networks, whose bandwidth is relatively
limited and unpredictable. As a result, it is imperative to
minimize the amount of data being moved and improve the
efficiency of collaborative data processing. The approach we
take is to integrate indexing data structures, which is often
much more smaller than raw data, with primary data and
use them to locate target data records quickly when must.
For example, a workflow that computes the sizes of magnetic
islands might take input data from a high-resolution imaging
device, however only certain pixels from an image would
be part of the magnetic islands. Filtering the data records
before they are transferred will reduce the amount of data
moved and therefore improve the overall system response time.
An indexing structure could be used to perform this filtering
operation efficiently. Furthermore, a set of data analysis algo-
rithms depending on sparse matrix operations can benefit from
indexing data in preparing sparse input from a large volume of
dense data. For this end, we employed a cutting-edge indexing
solution, FastBit, in our system [4].

However, index building is an expensive operation and can
be inappropriate in a certain scenario. Then, various questions
may be asked: When should we index? Is it beneficial if we
transfer index to a remote site, instead of keeping in a server?

Data
Generation

FastBit
Indexing

ICEE
ServerRaw 

Data

Index

Analysis

Analysis
FastBit
Query

Data Hub
(Staging)

Data Source Site Remote Client Sites

Analysis Analysis

Data Hub
(Staging)

Analysis

Fig. 2: An overview of ICEE system.

We will address such questions in this paper.

In short, in this paper, we propose a solution based on
two key technologies: I) wide-area in transit (or in-flight)
data processing to avoid expensive file I/Os and II) indexing
and querying to search data efficiently and provide efficient
network data transfer by moving partial data selectively. More
specifically, our system, named ICEE (also our project name
in collaboration with KSTAR1), is designed to support wide-
area in transit data processing for stream-based scientific
applications. Our system consists of the three major features,
as follows:

• Stream data processing – supports stream-based IO to
process pulse data;

• In transit processing – provides remote memory-to-
memory mapping between data source (data generator)
and client (data consumer);

• Indexing and querying – FastBit.

In the following sections, we discuss background and
related work and present our ICEE system in details in Sec-
tion III. The evaluation of our system and experimental results
will be shown in Section IV, followed by our conclusion
in Section V.

II. BACKGROUND AND RELATED WORK

We start with introducing our driver application in fusion
science and discuss related work.

A. KSTAR fusion experiment

The KSTAR (Korea Superconducting Tokamak Advanced
Research) studies nuclear fusion to develop next-generation
energy sources2. It was the first fully superconducting fu-
sion tokamak in the world. The design and experimental
results of the KSTAR reactor will serve as a precursor to
the ITER (International Thermonuclear Experimental Reactor)
project in building next-generation superconducting tokamak
in Cadarache, France. Currently, it is the fusion device with
the longest pulse, up to 300 seconds long [1]. This long-
duration pulse gives scientists more opportunity to study the
fusion plasma and also creates significant data management
challenges.

1International Collaboration Framework for Extreme Scale Experiments
(ICEE), https://sdm.lbl.gov/icee/

2More information about KSTAR can be found at http://kstar.nfri.re.kr/.



During the 300-second pulse period, there are always
chances for the tokamak plasma to go into dangerous disrup-
tion events, which could exert excessive stress on the tokamak
structure and/or damage the plasma-facing wall. In order to
minimize such a disruption event, a couple dozen diagnostics
systems measuring plasma rotation breaking, magnetic island
growth in the core, resistive wall mode activity, decline of neu-
tron emissivity from predicted value, and so on, need to work
together for monitoring of the precursor phenomena. When
an imminent disruption event is predicted to be probable, an
automated preventive action is triggered within milliseconds.
Collapse of the edge plasma by the so-called, “edge localized
mode instability”, is another danger that must be suppressed
by an early detection using several diagnostics systems, such
as microwave imaging or fast visible camera. Besides the
predictor-preventer purposes, a real-time data analysis accom-
panied with real-time experimental control could maximize
the multi-million dollar experimental pulse. Furthermore, post-
processing data analysis and physics research can be used for
the next experimental pulse. For this purpose, large amount of
streaming data will have to be distributed quickly and analyzed
efficiently by remote scientists.

The particular test data used in our study came from SXR
(called Soft X-ray Array), as a part of DAQ (Data Acquisition
Systems) in KSTAR. The SXR has 64 channels running with
8 digitizers (max 500KHz) [5], [6].

B. ADIOS

ADIOS has been developed to provide an efficient I/O
solution in many large-scale scientific applications, such as
combustion simulation (S3D), climate modeling (GEOS-5),
Gyrokinetic Toroidal Code (GTC), plasma fusion simulation
code (XGC), etc. ADIOS is a modular system that provides
I/O abstractions and services that allow scientists to build their
scientific applications as a series of services, or modules [2].

The ADIOS API is used by applications to interface to
the services as well as write and read large volumes of data
very efficiently on tens of thousands of compute cores. It
implements several high performance I/O modules and allows
an application developer to employ the most appropriate I/O
method for his/her application. In addition, applications can
make use of data staging and in situ and in transit processing
capabilities to filter and transform data in order to reduce
network and staging overheads.

C. FastBit

FastBit is a software package for indexing and querying
large scientific data sets [4]. It contains a number of state-of-
art bitmap indexing methods [7], [8]. These bitmap indexing
techniques are well-suited for typical scientific applications
where the data is read-only and the queries typically touch
upon numerous data records. For example, a typical query on
a set of data from space weather modeling might be to find
all high-energy particles within a region in space, which could
include millions of particles [9]. When analyzing a combustion
simulation, a typical query might be to find regions of ignition,
which might include millions of mesh points [10]. In these
cases, other commonly used indexing techniques such as B-
trees or hashing are much slower than bitmap indexes. To work

with large scientific data sets, we have also developed a way
to parallelize the indexing and querying functions [11], [12].

III. ICEE SYSTEM

To address the challenges mentioned above, we designed
a system, named ICEE, to support wide-area scientific data
processing. It has two main features: I) efficient data access
capability by supporting in transit (or in-flight) data analysis
with ADIOS, and II) data reduction using indexing and query-
ing by FastBit. In the following, we describe our prototype
system, ICEE, in details.

A. Architecture

Our system consists of three main components: data ac-
quisition, data server, called ICEE server, and remote clients
connecting through wide-area networks. We provide program-
ming interfaces (APIs) for clients to query data hosted by an
ICEE server (See Fig. 2).

Data Acquisition: This is an interface between data sen-
sors, which generate raw experimental data, and ICEE server,
and manages the raw data in memory for the ICEE server.

The user data can be either pushed to or pulled by the ICEE
system. Data may be pushed to ICEE for common activities,
such as indexing commonly used variables, which requires a
significant amount of computer time. It is important to prepare
the indexes before they are needed. Commonly used indexes
will typically be built as soon as the data is available, while
indexes on infrequently used variables may be specifically
requested by a user.

ICEE server: The ICEE server is in charge of providing
data to the remote users. It supports common data related
activities, such as indexing and processing queries.

In order to minimize disk I/O overheads, operations are
performed in memory as much as possible; i.e., index and raw
data will be residing mainly in memory and provide as a data
stream without accessing files. Data in memory is separated by
logical time steps (or called as shots in fusion experiments) but
shares similar structures between time steps. This is a natural
format of many scientific data, including fusion. Our initial
prototype has only a single server, but we plan to expand the
number of servers to provide more computing power for the
widely distributed user community.

Remote clients: Clients will be distributed over wide-area
networks and access remote data by connecting to an ICEE
server directly or via data hub which will be delegated by
multiple clients. Data hub can act as an aggregator for local
clients or parallel data analysis by providing in-memory stag-
ing services. Details are discussed in our previous work [13].

Clients can request data with queries to access a portion
of data selectively. Server will exploit index data to extract a
portion of satisfactory data set.

All communications between clients and servers are a form
of Remote Procedure Calls (RPCs), provided by a set of APIs
we developed. APIs are based on ADIOS and EVPath, which
will be discussed in details in the next.

We develop a new connection module (or plug-in) for
ICEE system to help a ICEE server and remote clients be



Socket
TCP/IP

Transport-independent 
Connection Manager (CM)

Fast Flexible Serialization (FFS)

ADIOS

RDMA…

Application

Wide Area Network (WAN)

EV
Pa

th

Fig. 3: Software stack of the ICEE system.

connected easily and exchange data. Our module is integrated
with ADIOS and thus shares the same ADIOS APIs (or same
interfaces) but supports wide-area data exchanges under the
hood. All operations are transparent to users.

B. Software Components

Our ICEE system includes the following main components.

In transit interface: ADIOS has been developed to support
data-intensive scientific applications which suffer from I/O
bottleneck problems, by providing a flexible and efficient I/O
solution optimized in various HPC environments. One of the
most attractive ADIOS features is its adaptability in which
users can choose a platform-specific or problem-specific I/O
modules (or called plug-ins) without re-writing applications
and, instead, simply specify parameters in a configurable input.
In other word, ADIOS provides an uniform I/O interface
but help users choose an optimized or problem-specific I/O
solution transparently.

We extended our I/O solution, ADIOS, by developing a
new add-on interface, specially designed for our ICEE project
to support transparent connections between a data server
(or provider) and a client (or consumer) through wide-area
networks.

By the virtue of ADIOS’s uniform interface design, an
application can choose to read data from files in a local disk
or streams delivered through wide area networks. Switching
between local files and stream data is transparent to users. This
will greatly help developing process. One can start developing
and debugging an application by using locally saved files first
and easily convert the application to handle streaming data
from remote servers, which is ideal for our ICEE project.

Connection module: To connect geographically remote
processes to communicate in time-critical fashion, the choice
of efficient connection methods is important. In addition, we
should take into account of heterogeneous network environ-
ments to support various types of collaborations. Especially,
motivated by the KSTAR application, we assume clients (data
consumer) are located over Internet in different places and
operated in non-uniform computing and network environments.
To support such various environments and provide cutting-edge
high-performance network functions, we use EVPath [14],
[15].

EVPath, which is a library to build event overlay networks,
consists of a set of core sub-libraries; CM for connection

Fig. 4: Remote monitoring application on a table device, showing
results from the analysis workflow on ICEE system.

manager, FFS [16] for fast flexible data serialization, and CoD
(C-on-Demand) for data filtering and transformation. Fig. 3
shows the software stack of ADIOS and EVPath.

Mobile clients: The workflow and data analysis on ICEE
system can be monitored and controlled from portable de-
vices. The portability and computing power of modern mobile
devices is increasing [17], [18]. These mobile devices are
finding their way in sciences as diverse as space explo-
ration [19] and epidemiology [20]. They are moving into
our daily activities [21]. Currently, due to their technical
limitations, even in the mobile friendly science applications,
they are primarily used for the social networking services
(SNS) and system status reporting [22]. We see a potential
for mobile computers to replace more functionality of laptops
and workstations [23], and producing a mobile extension of
the science workspace [24]. In this work, we explore the
option of supporting tablet computers as clients of the ICEE
system. As the first step, an application is prototyped to
monitor the ICEE workflow and data analysis remotely, and
access the results from the data analysis on a tablet device, as
shown in Fig. 4. Mobile tablet computing support in ICEE
system opens up a new horizon in collaborative scientific
computing environments, and will enable researchers to access
quickly and easily to the workflows and the results, like on
their workstations, and to control the analysis and workflow
interactively.

C. Performance Model

We present a performance model of our ICEE system.
This performance will enable us to anticipate the time needed
by various steps of the in transit workflow and allow us to
better schedule the tasks to meet the time constraints. The key
elements of the ICEE system to be discussed here network
communication and indexing/querying operated by FastBit. We
present element-wise performance models in the ICEE system.
Those models can be used to estimate projected performances
in various scenarios. Regression results and estimated perfor-
mance will be discussed in details in Section IV.

Communication time: We assume times, Tc, for sending
data of size x (in bytes) is linearly proportional to the size x
of data:

Tc = αcx+ rc (1)



0 2 4 6 8 10
−200

0

200

400

600

800

Time (seconds)

V
ol

t

(a) Time-series channel data

−200 0 200 400 600 800
0

0.5

1

1.5

2

2.5x 10
6

Volt

F
re

qu
en

cy

(b) Histogram

Fig. 5: An example of Soft X-ray Array (SXR) channel data (a) and
its histogram (b) showing number distributions.

where the coefficient αc represents average transfer time
(second/byte) between two nodes and its reciprocal represents
average network bandwidth (bytes per second). Residual coef-
ficient rc presents network latency.

Since we send data with extra header information padded,
actual data size to send and receive is slightly larger than real
data size x. However, this effect remains constant due to fixed
header sizes and can be negligible for large x.

Indexing and Querying: Times for both indexing and
querying, denoted by Ti and Tq respectively, for data of size
x bytes follow also a linear model. They can be represented
by:

Ti = αix+ ri (2)
Tq = αqx+ rq (3)

In earlier analysis [7], we have shown the time to create and
operate on a FastBit compressed index is a linear function of
the number of words (therefore also bytes). When constructing
an index, the time needed is proportional to the total number
of bytes needed for storing the index. In a given application
where the index size is closely related to the raw data size,
therefore, it is fine to assume the index construction time is
proportional to the raw data size. When answering a query, the
time is expected to be proportional to the number of records in
the answer. Since the number of answers in an average query
is proportional to the number of data records in the raw data
size, it is fine to state the query processing time as a linear
function of the raw data size.

IV. PERFORMANCE RESULTS

In this section we present an evaluation of our prototype
system. Based on our performance models shown in (1) to (3),
we carefully examine the performance of the key components
of ICEE, and discuss projected performances on various sce-
narios. This performance characteristics will be important for
composing more complex workflows in the future.

Before presenting experiment results in the next, we briefly
discuss our experimental environments and data sets. To
simulate wide-area data analysis, we employed two clusters
running in geographically separated locations: Sith, located
in Oak Ridge National Lab (ORNL), and Carver, located in
Lawrence Berkeley National Laboratory (LBNL). Two loca-
tions are connected by 10Gbps/100Gbps backbones operated

TABLE I: List of data sets

Name Type Duration Signal Length
Set A Real-world 10 seconds 5,000,000
Set B Simulated 100 seconds 50,000,000
Set C Simulated 1,000 seconds 500,000,000

by Energy Sciences Network (ESnet). Sith is a Linux cluster
comprised with 40 compute nodes. Each node contains four
AMD Opteron Processors (2.3GHz with 8 cores), and 64 GB
of memory.

We used a real-world experimental data set measured
from KSTAR tokamak, called Soft X-ray Array (SXR). SXR
is a time-series data measured by a camera array with 64
channels. Each channel can generate measurement data (as
integer numbers) per 2 micro seconds (µs). As of current
technology, a fusion reaction can last about 10 seconds per shot
and a SXR data set contains 5,000,000 integer numbers per
channel. An example is shown in Fig. 5. KSTAR tokamak is
expected to increase the reaction time up to about 300 seconds
in future.

In addition to this real-world experimental data we have
(hereafter we call Set A), we prepared two larger data sets in
order to study our system performance to fit the future KSTAR
tokamak performances. Based on Set A, we simulated x10
and x100 longer experiments, 100 seconds and 1,000 seconds
respectively, and generated data sets, called Set B and Set C.
We use those 3 data sets in total for performance projection
in the next. They are summarized in Table I.

A. Regression fitting

We run experiments to perform linear regression analysis
of our system performance.

First, we measured performance of indexing and querying
implemented by FastBit in a single process configuration (We
didn’t explore FastBit’s parallel indexing options in this paper.
Distributed parallel schemes are discussed in the previous
work [11]). Fitting results are shown in Fig. 6a and 6b. We
observed both indexing and querying follow a well-fitted linear
model in which elapsed times grow proportionally with respect
to the length of data.

From this result shown in Fig. 6a, we can compute Fast-
Bit indexing speed (or rate), represented by the number of
processed integers per second to build an index data. FastBit
can process about 1.7 million integers per second, which is
over x3.4 times faster than data generation speed of SXR in
KSTAR (0.5 millions/second). It is worth noting that FastBit
can perform building an index while a KSTAR experiment is
being conducted. I.e., we can build indexes during the shot
period.

Next, we measured wide-area communication perfor-
mances in sending and receiving integers between ORNL and
LBNL with TCP/IP Protocol. Due to the security restrictions
in both institutions, we used SSH tunneling. A fitting result
is shown in Fig. 6c. Overall, we observed an average network
transportation rate, 2.139 × 10−0.7 seconds for sending one



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

0 500,000,000 1,000,000,000 1,500,000,000 2,000,000,000
Size of signal (bytes)

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Index Performance

(a) αi = 1.447× 10−7, ri = 0.06

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

0 500,000,000 1,000,000,000 1,500,000,000 2,000,000,000
Size of signal (bytes)

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Query Performance

(b) αq = 6.782× 10−9, rq = 0.001

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

10

20

30

40

50

60

200,000,000400,000,000600,000,000800,000,0001,000,000,000
Size of signal (bytes)

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Communication Time

(c) αc = 5.348× 10−0.8, rc = 0.159

Fig. 6: Linear regression analysis of ICEE system.

32-bit integer, which corresponds to 142.67 Mbps network
bandwidth.

B. Performance projection

Based on our observed regression results, we project per-
formances of different scenarios.

During a shot: This is a period data is constantly generated
and accumulated into a memory buffer. Let assume data
generator (such as SXR array) is writing data at the rate of g
bytes/second into a memory buffer. Then, at time step t, data
size of total x (bytes) will be available in the buffer, such as
x = gt. FastBit will build indices in an additive way, such that
it processes only a certain amount of data (let denote ∆x) from
the buffer and updates to an existing index structure. FastBit
query is performed and a small fraction of the full data in the
buffer will be sent back to users through wide-area networks.
Let p denote the fraction of queried results.

Then, we define the response time Tresp be the sum of all
elapsed times (indexing, querying, and communication) which
can be computed by the following equations:

Ti = αi∆x+ ri (4)
Tq = αqx+ rq (5)
Tc = αcpx+ rc (6)

However, an additive indexing is not always applicable. In
such a case, we can rebuild index periodically as data is being
generated. Then, Ti can be computed by (2).

Based on the previous fitting results, we computed response
times with different indexing strategies, full indexing vs. ad-
ditive indexing, and also compared them with file transferring
times without indexing and query processing, as a base case.
Fig. 7 shows simulated results for the 10 second fusion
experiment case (Set A) and 1,000 second case (Set C). In
these experiments, we assumed p = 0.1 (i.e., 10% query
results) based on our own experience in image analysis and
g = 2.0 × 106 (bytes/second) which is the real-world data
generation rate in KSTAR’s SXR. For simulating additive

indexing, we assume 10% delays so that FastBit will read only
2 Mbytes (∆x = 2 × 106) in Set A or 200 Mbytes in Set C
per operation.

Using an additive indexing can provide a significant speed
up, compared to the base case using file transfers without
FastBit indexing. Meanwhile, full indexing looks expensive,
compared to the additive indexing. In Fig. 7b, it took less than
1/3 of the assumed fusion reaction time (1,000 seconds). We
think it can be a feasible solution but can not be used for time
critical applications.

Between shots: Followed by the during shot period, there
is a resting period generating no new data and, thus, no
indexing operation is necessary. Only querying and network
communication will occur. Then, the total response time Treap
is the sum of only querying and communication time, esti-
mated by,

Tq = αqM + rq (7)
Tc = αcpM + rc (8)

where M represents the size of data in a buffer. M is a
fixed value, corresponding to the maximum length of signals
(See Table I).

Fig. 8 shows the estimation of three response times for our
data sets (Set A, Set B, and Set C) with different data sizes.
We assumed p = 0.1 (i.e., 10% query results) here too. As
shown in Fig. 8, we can achieve significant performance gains
by using FastBit, compared with just sending data (SCP copy)
as files. Especially, with Set C, we may achieve maximally
4.2x speedup.

Remote indexing: We explore possibility of distributing
index data itself to remote clients so that remote clients
can query data locally without need to contact to a data
server frequently. This operation will better be performed in a
between shots period. To this end, a client can build indices
locally after receiving the raw data from a server. Otherwise,
a server can distribute indices along with the raw data. The
index data structure of FastBit could be larger than the raw
data, so a trade-off can be made based on a network speed.



●

●

●

●

●

●

●

●

●

●

●

1

2

3

0.0 2.5 5.0 7.5 10.0
Time (seconds)

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

Type

● Full

Additive

File

Response Time (Set A)

(a) Set A

●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

0 250 500 750 1000
Time (seconds)

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

Type

● Full

Additive

File

Response Time (Set C)

(b) Set C

Fig. 7: Response times during shot period with Set A (a) and Set C (b). Compared two indexing schemes, full indexing vs. additive indexing.
Green lines represent only file transferring time without using indexing or query processing.

0.00
0.25
0.50
0.75
1.00
1.25

0

3

6

9

0

30

60

90

S
et A

S
et B

S
et C

ICEE SCP

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Elements

Query

Comm

File

Response Time (Between shots)

Fig. 8: Estimated response times between shot periods. Assumed
10% (p = 0.1) of original data queried. In Set C, we can achieve
maximally 4.2x speedup compared to sending data over SCP.

If network speed is good, it is better for a client to receive
index data from a server. If not, it is better to receive raw
data only and build an index data locally. In our experimental
environments, copying index data worked better. Fig. 9 shows
our estimation to compare index copying with local indexing
building.

V. CONCLUSION

Large scientific experiments often have participants from
around the world, the ability to access and analyze the data
in real-time is a necessary feature for increased collaboration
and therefore increase productivity. In this paper, we propose
a strategy to satisfy this real-time data analysis needs with dy-
namic subsetting and in transient data processing. We present
a prototype system, called ICEE, to support near real-time
scientific applications over wide-area networks. Our system
is based on two key technologies: I) Adaptive I/O System,
ADIOS, to support wide-area in transit (or in-flight) data pro-
cessing to avoid expensive file I/Os, and II) FastBit to provide
indexing and querying features for efficient data searching and

0

1

2

3

4

0

10

20

30

40

0

100

200

300

400

S
et A

S
et B

S
et C

Copy Remote

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Elements

Comm

Index

Query

Index copy vs Remote indexing

Fig. 9: Comparison of copying index from a server with building
index in a local client. In our experiment environment, copying indices
through wide-area network works better than building indices locally
in a remote client site.

provide effective network data transfer by moving partial data
selectively.

By using the real fusion experimental data generated from
the KSTAR fusion reactor, we provided the performance eval-
uations of our ICEE system and demonstrated the effectiveness
of our implementation. Our test results show that the amount of
time needed by major components of the system scales linearly
with the number of data records examined. This feature allows
the user the option of adjusting the number of data records they
want to examine during time-critical analysis steps. For a range
of tasks, it is possible to complete them in a few seconds over
a wide-area network spanning across the US.

REFERENCES

[1] G. Lee, M. Kwon, C. Doh, B. Hong, K. Kim, M. Cho, W. Namkung,
C. Chang, Y. Kim, J. Kim et al., “Design and construction of the kstar
tokamak,” Nuclear Fusion, vol. 41, no. 10, p. 1515, 2001.

[2] “ADIOS: ADaptable I/O System,” https://www.olcf.ornl.gov/
center-projects/adios/.

https://www.olcf.ornl.gov/center-projects/adios/
https://www.olcf.ornl.gov/center-projects/adios/


[3] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible
IO and integration for scientific codes through the adaptable IO system
(ADIOS),” in Proceedings of the 6th international workshop on Chal-
lenges of large applications in distributed environments. ACM, 2008,
pp. 15–24.

[4] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-
Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Lauret,
J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer,
Prabhat, O. Rübel, A. Shoshani, A. Sim, K. Stockinger, G. Weber, and
W.-M. Zhang, “Fastbit: Interactively searching massive data,” in SciDAC
2009, 2009, lBNL-2164E.

[5] S. H. Lee, K. B. Chai, S. Jang, W.-H. Ko, J. Kim, D. Seo, J. Lee,
I. Bogatu, J.-S. Kim, and W. Choe, “Design and fabrication of a
multi-purpose soft x-ray array diagnostic system for kstar,” Review of
Scientific Instruments, vol. 83, no. 10, pp. 10E512–10E512, 2012.

[6] M. Garcı́a-Muñoz, S. Akaslampolo, O. Asunta, J. Boom, X. Chen,
I. Classen, R. Dux, T. Evans, S. Fietz, R. Fisher et al., “Fast-ion
redistribution and loss due to edge perturbations in the asdex upgrade,
diii-d and kstar tokamaks,” in IAEA Fusion energy conference, 2012.

[7] K. Wu, E. Otoo, and A. Shoshani, “Optimizing bitmap indices with ef-
ficient compression,” ACM Transactions on Database Systems, vol. 31,
pp. 1–38, 2006, http://doi.acm.org/10.1145/1132863.1132864.

[8] K. Wu, A. Shoshani, and K. Stockinger, “Analyses of multi-level and
multi-component compressed bitmap indexes,” ACM Transactions on
Database Systems, vol. 35, no. 1, pp. 1–52, 2010, http://doi.acm.org/
10.1145/1670243.1670245.

[9] S. Byna, J. Chou, O. Rübel, Prabhat, H. Karimabadi, W. S. Daughton,
V. Roytershteyn, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin,
A. Shoshani, A. Uselton, and K. Wu, “Parallel I/O, Analysis, and Visu-
alization of a Trillion Particle Simulation,” in Proceedings of SuperCom-
puting 2012, Nov. 2012, http://dl.acm.org/citation.cfm?id=2389077.

[10] K. Wu, W. Koegler, J. Chen, and A. Shoshani, “Using bitmap index
for interactive exploration of large datasets,” in Proceedings of SSDBM
2003, Cambridge, MA, USA, 2003, pp. 65–74, a draft appeared as tech
report LBNL-52535.

[11] J. Kim, H. Abbasi, L. Chacon, C. Docan, S. Klasky, Q. Liu, N. Pod-
horszki, A. Shoshani, and K. Wu, “Parallel in situ indexing for data-
intensive computing,” in Large Data Analysis and Visualization (LDAV),
2011 IEEE Symposium on. IEEE, 2011, pp. 65–72.

[12] J. Chou, K. Wu, O. Rübel, M. Howison, J. Qiang, Prabhat, B. Austin,
E. W. Bethel, R. D. Ryne, and A. Shoshani, “Parallel index and query
for large scale data analysis,” in SC11, 2011.

[13] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and
F. Zheng, “Datastager: scalable data staging services for petascale
applications,” Cluster Computing, vol. 13, no. 3, pp. 277–290, 2010.

[14] G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan, “Event-based
systems: opportunities and challenges at exascale,” in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems. ACM, 2009, p. 2.

[15] G. Eisenhauer, K. Schwan, and F. E. Bustamante, “Publish-subscribe
for high-performance computing,” Internet Computing, IEEE, vol. 10,
no. 1, pp. 40–47, 2006.

[16] G. Eisenhauer, M. Wolf, H. Abbasi, S. Klasky, and K. Schwan, “A
type system for high performance communication and computation,”
in e-Science Workshops (eScienceW), 2011 IEEE Seventh International
Conference on. IEEE, 2011, pp. 183–190.

[17] “Mobile Chips Threaten High-Performance Manufacturers,” http://
www.technologyreview.com/computing/25143/, May 2010.

[18] D. J. Cook and S. K. Das, “Pervasive computing at scale: Transforming
the state of the art,” in Pervasive and Mobile Computing, 2012, pp. 22–
35.

[19] A. Sobester, S. Johnston, J. Scanlan, N. O’Brien, E. Hart, C. Crispin,
and S. Cox, “High altitude unmanned air system for atmospheric
science missions,” in 11th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference, 2011.

[20] D. Aanensen, D. Huntley, E. Feil, F. al Own, and B. Spratt, “Epicollect:
Linking smartphones to web applications for epidemiology, ecology and
community data collection,” in PLoS ONE 4(9): e6968, 2009.

[21] M. Pelino, C. Mines, and S. Musto, “Forrsights: Mobility dominates
enterprise telecom trends in 2011,” in Forrester, July 22, 2011.

[22] “The NERSC mobile user portal,” http://m.nersc.gov/.
[23] “Digital Omnivores: How Tablets, Smartphones and Connected Devices

are Changing U.S. Digital Media Consumption Habits,” comScore
whitepaper, Oct. 10, 2011.

[24] H. Schaffers, T. Brodt, M. Pallot, and W. P. (editors), “The future
workspace, perspectives on mobile and collaborative working,” in The
MOSAIC Consortium, 2006.

http://doi.acm.org/10.1145/1132863.1132864
http://doi.acm.org/10.1145/1670243.1670245
http://doi.acm.org/10.1145/1670243.1670245
http://dl.acm.org/citation.cfm?id=2389077
http://www.technologyreview.com/computing/25143/
http://www.technologyreview.com/computing/25143/
http://m.nersc.gov/

	Introduction
	Background and related work
	KSTAR fusion experiment
	ADIOS
	FastBit

	ICEE System
	Architecture
	Software Components
	Performance Model

	Performance Results
	Regression fitting
	Performance projection

	Conclusion
	References

