A Parallel R Framework for Processing Large Dataset on Distributed Systems∗

Hao Lin
Purdue University
West Lafayette, IN
haolin@purdue.edu

Shuo Yang
Huawei R&D Center
Santa Clara, CA
shuo.yang@huawei.com

Samuel P. Midkiff
Purdue University
West Lafayette, IN
smidkiff@purdue.edu

ABSTRACT

Large-scale data mining and deep data analysis are increasingly important in both enterprise and scientific institutions. Statistical languages provide rich functionality and ease of use for data analysis and modeling and have a large user base. R [3] is one of the most widely used of these languages, but is limited to a single threaded execution model and to the memory on a single node that limits the size of problems that can be solved. We propose a framework for a highly parallel R called R Analytics for Big Data (RA-BID). We achieve the goal of providing data analysts with the easy-to-use R interface that effectively scales to clusters by integrating R and the MapReduce-like distributed Spark [15] runtime. We provide preliminary experimental results showing the promise of our system.

Keywords
Distributed computing, big data analytics in cloud, R, Data Mining

1. INTRODUCTION

The R [3] language and system was specifically designed for data analysis computations and graphics. It has become increasingly popular over time and is the top software tool in the data analysis community according to some surveys [12]. Relative to tools such as SAS, SPSS, Python, etc., R is an excellent candidate for parallel data analytics since it was developed for sequential data analytics, is a cross-platform and open source system and has a rich collection of add-on packages. Despite its benefits, R suffers from the severe restrictions that its execution model is single threaded and memory is limited to what is available on a single node. Computational science and engineering and web applications have led to very large datasets becoming common. For example, CERN stores 24 Peta-bytes of data each year which must be analyzed and interrogated. With the growth of cloud-based infrastructures there are increasing amounts of data in logs tracking user behavior and system performance. At the same time, cloud services are providing opportunities to tackle problems of storing and processing large datasets. Allowing R to process these large amounts of data will allow the large R user-community to take advantages of widespread parallel resources such as the cloud.

Several other projects have focused on allowing R to run on larger systems and tackle larger datasets. Two parallel R packages are Snow [14] and Snowfall [10]. Their underlying distributed runtime framework is MPI and they only provide access to limited APIs that support parallel functions. The pbdMPI package [13] allows a user to program with low-level message-passing calls, which are very different from the current R programming model. pbdDMat [13] provides a higher level distributed matrix abstraction based on MPI and primarily targets linear algebra. RHIPE [2] provides an R programming framework on top of Hadoop’s MapReduce [1], but requires users to learn and use map-reduce. Ricardo [6] also uses Hadoop to parallelize data computation, but requires users to embed queries in R scripts to enable Hadoop computation. All of these systems require R users to deviate significantly from standard R programming. None of the MPI based systems supports fault tolerance.

Distributed computing frameworks designed for iterative workloads seem, from a purely technical perspective, to be the right way to support large scale data mining and statistical modeling in the cloud. In practice R programmers, used to its functional and data analytic oriented programming model, must overcome a steep learning curve to use these systems. RABID integrates Spark [15] and R to provide a distributed data computing framework that runs efficiently on clusters in the cloud. Instead of writing hundreds of lines of non-R code, data analysts need only to produce several or tens of lines of R-style scripts to create a work-flow data process.

This paper makes the following contributions:

1. It describes the RABID system, its compatible distributed data structures, API operators and runtime system that allow R to scale to distributed systems and provide fault tolerance;

2. It describes the blocking data reorganization and the runtime operation merging optimization that reduces data movement and improves system performance;

∗This work was supported by Huawei Technologies, US R&D Center, as a gift research funding
Figure 1: K-Means Clustering as an example of a using RABID. API functions are in bold font, RABID distributed data structures are in all capital letters.

3. It shows RABID’s performance on two benchmarks relative to RHipe and Hadoop.

This paper is organized as follows. We briefly go over the background of the R language and related work in Section 2. We describe the architecture of RABID in Section 3 and details of system design in Section 4. Application cases and evaluations are presented in Section 5. Finally, we draw conclusions and discuss the future work.

2. RELATED WORK

We discussed related R-based systems in the introduction.

The open source Hadoop [1] ecosystem (an open source MapReduce [7], Distributed File System (HDFS), etc.) and Dryad [9] are widely used. SystemML [8] is a matrix-based Hadoop extension framework for machine learning that uses a domain specific language. Hadoop’s design, however, precludes it from efficiently solving iterative problems because of job setup overheads and unnecessary disk I/Os [5, 15]. Data mining and statistical analysis, the foundation of deep analysis, are iterative problems with analysts exploring data of interest and building a model based upon some assumptions or hypothesis. The Spark [15] framework solves iterative data processing problems, which enables 20X performance improvements over Hadoop for some workloads that need in-memory iterative analysis, while retaining features like fault tolerance and high availability. Our work provides a familiar interface to the R community and spares these data analysts from learning to program C++, Java or Scala.

3. OVERVIEW OF THE RABID PROGRAMMING MODEL AND SYSTEM

3.1 RABID Programming Model

R is, at its core, a functional language that passes data through a series of operators (often represented as functions) that repeatedly transform the data. Iterative computations often involve some invariant data serving as input to a series of operations in a loop, with a transformed version of this data serving as input to the next iteration of the loop. The series of operators that transform some input data \(D \) to a new set of data \(D' \) is the lineage of \(D' \). Loop bodies are often a lineage.

We illustrate the R (and RABID) programming model using the K-Means Clustering algorithm script shown in Figure 1. In the example script, the RABID API \texttt{lapply()} applies an R function \texttt{as.numeric} to each line read by \texttt{rb.readLines()}, \texttt{as.numeric} converts each record to a numeric vector. The \texttt{cache} parameter requests R to cache the numeric working set in RAM if feasible. Next, a set of randomly picked centroids is defined as a list. In the iterative optimization loop, both \texttt{lapply()} and \texttt{aggregate()} (a reduce-like function that groups records by user-specified keys) are repeatedly invoked to compute the centroids closest to each record in \texttt{data} and to update the new centroids with the mean of points in the same cluster (aggregated with same key \texttt{id}), respectively. These transformations are using the user defined R functions \texttt{func} and the built-in function \texttt{mean}. The loop continues until the convergence condition is reached. We note that the lineage of the result of each loop iteration is the two \texttt{lapply()} and one \texttt{aggregate} operation.

RABID enables parallelism and the ability to handle large datasets in two ways. First, it provides a set of R compatible distributed data types that allow data to be distributed across multiple servers in a cluster. Second, it provides parallel implementations of standard R functions that operate on these distributed data types. In the example, the RABID versions of \texttt{lapply()} and \texttt{aggregate()} are data parallel, and \texttt{as.list()} is used to collect distributed data into an R list on the master machine. Except for \texttt{rb.readLines()}, all other RABID functions override standard R and provide users with signatures that differ only in optional parameters.

3.2 Distributed Data Types and APIs

RABID provides several R-compatible data types that are “drop-in” replacements for the corresponding standard R data types. A key data type for R (and other functional languages) is the \texttt{list}. R lists differ from arrays in that all elements of an array should have a common type, but different list elements can have different types. RABID supports the \texttt{BigList} distributed type. R and RABID also provides data types such as matrices and data frames (well-structured data with rows of records and columns of attributes, similar to database data tables.)

Each distributed dataset is accessed as an instance of a “\texttt{Big}” class. These objects are descriptors, or promise objects, i.e., instead of actually containing the data they store the necessary information to obtain the data. Thus distributed datasets are lazily evaluated and operations are executed only when their values are needed, providing opportunities for exploring performance optimizations. A UML view of the structure of the RABID data types is shown in Figure 2.

More low-level APIs can be referred in [11]. Table 1 shows high-level RABID APIs that manipulate the BigMatrix and BigDataFrame data types. The APIs take optional tuning parameters to control communication granularity but are otherwise identical to vanilla R APIs, making RABID easy for R programmers to use. Figure 4 shows that these APIs are part of the RABID package.
BigDataFrame BigMatrix

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rb.data.frame()</td>
<td>returns a BigList column of specified attribute</td>
</tr>
<tr>
<td>rb.matrix(...)</td>
<td>creates a distributed matrix dataset</td>
</tr>
<tr>
<td>aggregate(x, by, FUN)</td>
<td>computes aggregated by specified attribute</td>
</tr>
<tr>
<td>adply/apply(X, MARGIN, FUN)</td>
<td>applies functions to row or column marginal</td>
</tr>
</tbody>
</table>

Table 1: Sample APIs for BigDataFrame and BigMatrix.

3.3 The RABID Runtime

RABID is designed to be a cloud-based software service that translates a user’s R scripts into Spark jobs in a cluster. Figure 3 gives the runtime overview of our proposed system. The RABID user focuses on developing R scripts while the web server communicates with the RABID (and Spark) master in the cloud to run the user’s command. The R session running on the master with RABID support is called the R driver script. It keeps dataset variables in symbol tables, schedules DAG structured jobs [15] and maintains user defined functions (UDFs). Each task worker on a slave directs tasks to serialize data into parallel R sessions, which carry out UDF computations.

4. SYSTEM DESIGN AND IMPLEMENTATIONS

4.1 Pipelining Data to R Sessions

The underlying HDFS chunks data into splits in Spark. RABID, however, would like to do pipelined communication between Spark and R so that processing can begin before all data has arrived at R processes, allowing an overlap between communication and computation. Communicating at split granularity can also cause more data to be sent to a node than can be held in physical memory, resulting in excess paging. To enable pipelining and reduce the memory pressure, RABID breaks splits into smaller data blocks. Because data blocks that are too small can also be inefficient, RABID provides an optional user parameter to tune the block size.

As shown in Fig. 5, RABID reads records from a file one-by-one. After a map-like operation (e.g., `lapply()`) is applied to each record, the result is stored in a fixed sized R list that
Merging operations has several benefits. First, the merger allows one set of R processes to be created for the entire m-op rather than creating multiple ones for each operation within the m-op. Second, when data is pipelined to the m-op, one set of input data is transmitted to the m-op and all other data needed by constituent operations is produced within the m-op. This is much cheaper than creating a new distributed dataset on Spark and writing results to it with redundant data transmission and serialization, as would be necessary if the operations of the m-op were executed separately. With m-ops there is a single UDF transmission, a single pipelined communication phase and startup, and a single output distributed dataset created and written.

4.4 Fault Tolerance
We take advantage of Spark’s existing heartbeat based worker-side fault tolerance mechanisms to handle node failures. Tasks are restarted when the heartbeat indicates a worker task failure. Lineage information for tasks stored in both the R driver process and the Spark master process can allow lost results to be recomputed, reducing checkpointing overheads. Periodic checkpointing will still allow the system to recover faster from failures.

User code errors terminate R worker sessions. In RABID, these errors will be caught and will immediately terminate the job (fast fail) so that Spark’s fault-tolerance mechanism does not try and recompute tasks or other useless operations. RABID also collects R’s verbose error information from each worker’s stderr to give users information about the cause of a failure. On the R master, job information such as the symbol table of dataset variables, program execution state and worker information are replicated by the backup by using Apache Zookeeper.

5. EVALUATION

5.1 Experimental Setup
Experiments were conducted in a 12-node Linux cluster: each node has 8 cores and 16 GB RAM. The cluster is running Ubuntu 12.04, Linux Kernel 3.2. We evaluated two data mining algorithms: Regression (LR) and K-means Clustering. We demonstrate that their implementations in RABID provides improved performance compared to those in Hadoop 0.20 and RHIPE 0.7. LR and K-means are both iterative algorithms implemented using the BigList data type. LR is run using a synthetic dataset with from 1 million to 100 million data points. K-Means uses the movie dataset with 100 million ratings from [4].

5.2 Experiment Results
Figure 6(a) gives the time spent for runs of K-means with input movie dataset of 10 million, 30 million and 100 million ratings and RABID again shows significant performance benefits.
Figure 6: Performance results for LR and K-Means.

(a) Runtime in seconds for K-Means over 8 iterations on different data sizes

(b) Runtime in seconds for LR over 8 iterations on different cluster sizes

(c) Runtime in seconds for LR over 8 iterations on different cluster sizes

(d) Runtime in seconds for LR on each iteration

6. FUTURE WORK AND CONCLUSION

We have presented the RABID system that integrates R and Spark. RABID provides R users with a familiar programming model that scales to large cloud based clusters, allowing larger problems sizes to be efficiently solved. Unlike other systems that require R programmers to use unfamiliar languages or programming models, RABID uses can write R scripts to create a work flow data process. RABID uses operation merging and data pipelining along with optional user tuning of communication parameters to further improve performance and allow RABID to outperform Hadoop and RHIPE on our benchmarks. Development continues on RABID to support more high-level functions and to implement further optimizations, and RABID is cloud-ready to be made as a service.

7. REFERENCES

