
ICON DSL: A Domain-Specific Language for
climate modeling

Raul Torres
University of Hamburg

Leonidas Linardakis
Max Planck Institute

for Meteorology

Julian Kunkel
Deutsches

Klimarechenzentrum

Thomas Ludwig
Deutsches

Klimarechenzentrum

Abstract—The presence of platform-specific structures inside
the ICON climate model make the code overall complex and
inflexible, while the extend and number of code variations that
can be expressed through preprocessing directives is limited. For
cases like this, abstraction of data and loop structures offered by
a Domain-Specific Language (DSL) allows a single description
of the model and also flexibility for adapting to architectures.
Additionally, a DSL eases the programming task for climate
scientists since it provides a syntax closer to the semantics of
the model domain while hiding the coding details which are
important to achieve performance. We have designed a DSL as
a natural extension of Fortran capable to do such abstractions.
We also have formed a source-to-source translator that converts
DSL enriched code into native Fortran while applying machine
specific translations.

I. INTRODUCTION

Global climate simulations are one of the Grand Challenges
of computing [1], they rely on complex Earth System Model
(ESM) runs, at the highest possible resolution and for long
timescales. These models are often composed by several
hundreds of thousands of code lines, and their complexity is
increasing in order to simulate additional physical processes.
It is cumbersome to express the model in general-purpose
languages while still achieving good efficiency on different
platforms. The current diversity and constant evolution of
hardware architectures and programming models for solving
computational problems makes it difficult to design efficient
programs that could exploit the capabilities of all these
technologies. Generally, the modeler – who is an expert in
the climate domain – has to spend an increasing amount of
time dealing with computation details rather than on relevant
scientific questions. The scientist has to face the problem
of making a reasonable trade-off between efficiency and
portability.

This challenge has been experienced by the scientists
developing the ICON climate model. ICON is a joint project
of Max Planck Institute for Meteorology and the German
Weather Service, with the goal of developing a new generation
of general circulation models for the atmosphere and the
ocean in a unified framework [2]. This model solves the fully
compressible non-hydrostatic equations of motion at a very
high horizontal resolution based on an icosahedral grid. ICON
is written in Fortran, a general purpose language. Its code
exhibits several explicit machine-dependent optimizations that
make it harder to debug and maintain. Loop exchange, for
example, is perform using pre-processor directives that irrupt

between Fortran statements.

We aim to provide an abstraction framework in the
context of an ICON Domain-Specific Language (ICON DSL).
Such language is bundled with a reliable Source-to-Source
translator that converts DSL code into fully compatible
Fortran code, where the computation details are expressed.
This translator uses an Intermediate Representation (IR)
suitable for simplification and high level optimizations,
but most important, independent from a specific hardware
architecture.

Our target is not only adaptivity to architectures; we
also aim for creating a real domain-specific language able to
capture the semantics of the climate model. In this sense, we
are currently integrating to the language the notion of sets
and subsets and a proper way to loop over their elements.

To construct the ICON DSL, we have utilized a bottom-up
approach; we started from the basic structures of the code
that may be suitable for abstraction. In this first stage of the
development process, we provide keywords which control
memory dimension and layout of variables with specific
model semantics. Both dimension and layout specification are
hidden from the modeler, being the translator in charge of
generating adequate implementation according to a selected
platform. Being our DSL an extension of Fortran, it is going
to be easier for scientists to adapt to it rather than having
to learn a complete new language – they just have to get
familiar with a few new keywords and language constructs. It
is also more natural to a modeler, since language extensions
are emerging with new Fortran standards every few years.

These ideas are not new. Nevertheless, the novelty of
our approach consists in the attempt to make the language
more natural and easier for the modelers and at the same
time extending Fortran rather than creating a complete set of
new rules. The features introduced by the DSL are discussed
within the ICON development group and are adjusted to the
modelers’ requirements for expressiveness. Actually, inside
the climate community, the high level approach is the usage
of backend libraries or template-based operators, both being
awkward expressions of mathematical operators.

The current implementation is preliminary, but
demonstrates a great potential for adaptivity and user-

friendliness. New ideas of features are currently under
consideration and it is our goal to gain the approval of the
DSL approach by the climate modeling community, where
previous similar attempts have been not successful.

This paper presents a DSL extension of Fortran for the
ICON climate model, suitable for abstracting memory opera-
tions and optimizations, as well as the corresponding source-
to-source translation infrastructure for automatic code genera-
tion. The paper is structured as follows: in section II related
efforts in DSL design are covered; in section III the details
of the DSL are discussed, while in section IV we discuss
the challenges we faced while building the source-to-source
translator; section V shows first performance results; finally,
sections VI and VII present a discussion about on going and
future work, and conclusions, respectively.

II. RELATED WORK

Even though general purpose languages like Fortran or
C/C++ intent to be platform independent, efficiency might
depend on the code structure and memory layout which is
architecture dependent. Unfortunately, the compiler cannot
change the memory layout by itself because modifications
could change the semantics of the program. Performance
optimization requires deep knowledge about both the platform
and the language capabilities, making the programming task
more difficult for the domain expert. At this point, a DSL
comes in handy.

The advantages of DSLs as helpers for the domain
expert to express the problem in a more natural way, are
well documented in the literature [3][4][5]. However, it is
important to remark that, actually, most approaches converge
into the idea that domain targeting also guides DSL designers
to the identification of those domain-dependent computation
bottlenecks and to find the most optimized ways to express
them in the target general purpose language [6].

There are several DSL frameworks tackling the problem
of abstraction for specific domains, in order to generate
optimized code. Nevertheless, they differ from our approach
in the type of DSL and the relying infrastructure used.

DSLs can be designed as complete new language. For
example, in 2001, van Enlangen proposed ATMOL [7], a
DSL for atmospheric models. It was build on top of Ctadel
language [8], a PDE framework able to generate optimized
Fortran code for HIRLAM-based models[9]. The provided
abstractions for the language where straightforward. However,
there are not so many documented uses of it in the literature.
A more recent work is Liszt [10], a DSL framework to build
mesh-based PDE solvers, crafted on top of Scala language.
Similar to our approach, this DSL is able to generate code for
multiple platforms while abstracting the mesh elements of the
solver and allowing the construction of sets with topological
relationships.

The challenge for complete new DSLs, as well as for
any new language, is to achieve significant acceptance

from the community and therefore avoid falling into
disuse and become unsupported in new platforms; also,
migrating complex domain-specific applications with years of
development and more than 100,000 lines of code to another
language is unfeasible. When such issues are faced, there is
the option to design an extension of an existing language; this
extension is intended to specialize the language in a certain
domain. The advantage of this direction is that it requires
little learning effort from the domain modelers, who are
usually experts in the base language. Additionally, existing
code can be modified incrementally, which reduces the burden
to developers and increases testing cycles.

Approaches like HiCUDA [11] intent to ease the task
of converting a sequential program into a GPU parallel one
using annotations over a general-purpose language like C; but
HiCUDA transformations are not domain-specific. A similar
annotation approach but with a DSL flavor can be seen in
Mint [12]. The difference with HiCUDA resides upon the
fact that instead of offering general-purpose transformations,
Mint focuses in provisioning a set of annotations to express
parallelism only for the domain of stencil computations.

The problem with annotations resides upon the fact that
they are constructions that don’t integrate cleanly into the
grammar of the base language and therefore break the natural
programming work flow on the developer side.

It is also possible to use preprocessing macros to extend
a language. However, they become unpractical and bug prone
when the programmer has to deal with complex codes. For
example, using macros to define the dimensions and memory
layout restrict an array identifier to such features, when these
arrays may have different sizes and even a different order
depending on the context. In general, relying on preprocessing
macros is considered to be a bad coding practice. The use of
templates is a more feasible and correct approach with good
results, like is the case of the DSL for the COSMO model [13].

Our approach intends to benefit from the advantages of a
DSL extension, but with a cleaner integration of new keywords
into the existing grammar rules. In fact, our extensions can be
considered as Fortran standard targeting advanced performance
portability.

III. ICON DOMAIN-SPECIFIC LANGUAGE

The ICON Domain-Specific Language acts as an extension
of Fortran. The modelers only have to learn a few meaningful
keywords and constructions, as well as the correct places
where to put them in their Fortran codes. Such keywords are
crafted to conveniently generalize platform-dependent details
like memory layout or hardware-specific optimizations, and
their use can help the modeler avoid expressing computational
details that can make the code otherwise less portable.

There are to basic principles that support this design:

• The ability to express climate mathematical operators
in an easy and natural way.

• The capability to adapt the implementation of these
operators to different architectures and parallel levels

The keywords and constructions of the language extension
and their corresponding behavior are defined in a separated
platform-specific file. The platform specific file must be cre-
ated only once and its details are hidden from the normal
scientist developing the model coding. Each new keyword
is defined in the platform configuration file as 3-field tuple
separated by spaces, as follows:

<keyword_name> <platform_specific_settings> <keyword_type>

The keyword name string clearly makes reference to
the new keyword to be incorporated in the language. The
platform specific settings is a string used to characterize
the particular behavior of the keyword. The keyword type is
a string that indicates which constructions of the code can
benefit from it.

Currently, there are 3 different types specified: Array
declarations, array initializers and optimizers. The potential
options for platform specific settings depend on the type of
the declaration.

Example:
The configuration is illustrated on an example for a declaration
of a 2-D variable:

BASIC_ARRAY {1,0} declare

This declaration has the following meaning:

• BASIC ARRAY is the new keyword which can be
used within the source code.

• The platform specific string ({1,0}) specifies that an
array of this kind will be 2-dimensional and all index
references will swap index positions

• declare states that the keyword can only be used
for declaration statements.

On another platform, the configuration can be adapted to use
another memory layout:

BASIC_ARRAY {0,1} declare

A. Array declarations

At an array declaration, users can add a meaningful key-
word to characterize the variable. This keyword encodes in
itself information like the dimension and the memory layout.
Therefore, the dimension part can be avoided in the definition.

1) Platform-specific configuration: For multiple-dimension
array declarations, platform_specific_settings
specifies the dimension and the memory layout (how the
indexes must be interchanged). keyword_type specifies
that the keyword must be used in a declaration statement.

Example configuration:
ON_CELLS {1,2,0,3} declare

The platform-specific configuration {1,2,0,3} is interpreted
as follows:

• Index 0 goes to position 2

• Index 1 goes to position 0

• Index 2 goes to position 1

• Index 3 remains in position 3

2) Usage of the keyword: The new keyword must be
written in any place between the type specification and
the double colons of a declaration statement in Fortran.
Nevertheless, it is considered only when the variable is an
array. If not, it is ignored by the DSL parser. Notice the lack
of a dimension specification in the Fortran declaration. The
modeler does not have to take care of a special arrangement
of indexes.

Example usage:
REAL, ON_CELLS, POINTER :: my_variable

my_variable(i , j , k, l) = 2

3) Generated Fortran code: The source-to-source transla-
tor takes both the code and platform-specific file and trans-
forms the declaration line as follows:

• The keyword is removed from declaration

• The dimension specifier is added to declaration

• At variable indexing references, the index interchange
for the specified platform is applied

Thus, by applying the machine configuration the code of
2), it is translated into:

REAL, DIMENSION(:,:,:,:), POINTER :: my_variable

my_variable(j , k , i, l) = 2

B. Array initialization

Array initialization can benefit from the index interchange
feature too. In this case, the used keyword encodes only the
memory layout, because this feature works only with one-
dimensional arrays. These special arrays store in each position,
size information for other multiple-dimension arrays.

1) Platform-specific configuration: The 3-field tuple in
the configuration file for this keyword is similar to the
one used for array declarations. The only difference is that
keyword_type must indicate that the keyword can only be
used at an initialization statement.

Example configuration:
SHAPE_4D {1,2,0,3} initialize

2) Usage of the keyword: The keyword must be written
after the equal symbol and right before the opening bracket
of the initialization statement. The characters, usually used
inside the brackets, must be avoided. Recall that a, b, c,
d make reference to the new values that each position of the
array is going to have.

Example usage:
my_variable = SHAPE_4D(a, b, c, d)

3) Generated Fortran code: At translation time, the state-
ment is transformed as follows:

• The keyword is removed

• The dimension characters inside the brackets are
added

• Indexes are interchanged according to the configura-
tion file

Thus, by applying the machine configuration the code of
2), it is translated into:

my_variable = (/ b , c , a, d /)

C. Optimizers

Optimizers can be associated to keywords, which can be
used to dictate how certain blocks of code are transformed
to improve performance. At the moment we just support on-
demand inlining.

1) Platform-specific configuration: In this case, the
3-field tuple changes as follows: keyword_type
characterize the keyword as an optimizer while
platform_specific_settings denotes the specific
optimizer to be applied. Both values are utilized by the
translator to restrain the use of the keyword in specific blocks
of code.

Example configuration:
INLINE inline optimize

2) Usage of the keyword: Optimizers usually are applied
to blocks of code. Inlining works only with subroutines, but
the keyword can be used in two contexts: one is to be written
before a subroutine definition; this forces inlining in all uses
of the subroutine.

Example usage:
INLINE SUBROUTINE example_subroutine(...)

But when it is written before a specific subroutine call,
only that subroutine call is forced to be inlined:

Example usage:
INLINE CALL example_subroutine(...)

3) Generated Fortran code: The transformations depend
on the type of optimizer. For the inlining optimizer, the
transformations performed are as follows:

• The keyword used at subroutine declaration is deleted

• At subroutine call, the complete call is properly re-
placed with the body of the inlined subroutine

• Declarations for dummy arguments inside the pasted
subroutine body are deleted

• Names of new variables of the subroutine are changed
to avoid conflicts with other variables in the containing
scope

IV. DESIGN OF THE SOURCE-TO-SOURCE TRANSLATION
INFRASTRUCTURE

At the beginning of the development process, we used the
ANTLR Parser Generator[14] as the base infrastructure. Our
decision was based on the its capabilities for designing of
parsers for grammars, specially for DSLs. The provision of an
AST represented a strong point to semantical transformations.
However, we encountered several burden that made develop-
ment harder.

• The symbol table must be built and managed by
the programmer itself, which can be easy for simple
languages but not for Fortran, where one has to be
aware about the scope level not only at the current
file but also at the imported modules

• Dealing with the AST is cumbersome, due to the fact it
is represented as a manually written reduced grammar
(tree grammar) that keeps only the meaningful tokens.
The programmer has to transform the original gram-
mar (parser grammar) into the reduced version using
rewriting rules. But the rewriting rules don’t gener-
ate the reduced grammar automatically. Instead, the
programmer has to make sure that the rewriting rules
correspond exactly to the desired reduced grammar.
This is time consuming and error-prone for a general
purpose language like Fortran

• Even though transformations on the reduced grammar
are easier to express, one has to create a complete
set of the language again, but recovery of the ignored
tokens is not that easy.

• The implementation of the inlining mechanism re-
quired the support of an external text replacement tool.

The characteristics of ANTLR make it more suitable
for tasks like: design simple grammars and translators,
implementation of parsers, and construction of translators
between different languages. For the case of the design of
language extensions, more powerful tools should be used.

Another tool that was taken into account was TXL [15],
a powerful language to perform text transformations based
on example but with a complex mechanism to manipulate
the intermediate representation; moreover, the source code is
still not open to the community, a relevant requirement for
our project. We also considered the use of LLVM[16] which
provides a low-level intermediate representation of the Static
Single Assignment form but that does not fit with our purpose
to keep our transformations in the higher possible level.
Nevertheless, the wide spectrum of hardware architectures
that LLVM targets make it a tool to consider when we decide
to leave the high level abstractions.

We have built our translator on top of the Rose Compiler
[17]. Rose is able to parse most of the Fortran expressions
of our codes by using Open Fortran Parser (developed under
ANTLR). It also provides a robust high level tree structure as
intermediate representation without losing almost none of the
original tokens. It is called SAGE III and provides an object

Fig. 1. Translation infrastructure

oriented API [18].

The symbol table is automatically built, we do not have
to care about conflicts or missing parts. Once we have a
valid AST, the unparsing is done automatically (with some
modifications on the tree, there is also the possibility of
generating C/C++ code)

However, some issues had to be fixed to parse our extension
and perform the DSL transformations:

• Rose Compiler provides no interface to design a lan-
guage extension. We developed a parser module that
reads the code, detects our keywords and replace them
with customized pragma annotations. After this first
transformation, code can be passed to Rose Compiler.

• A few correctly parsed Fortran statements have no
corresponding action to build nodes on the AST. We
implemented the missing actions inside our version of
Rose.

• Pragma annotations of the kind of Open MP are given
nodes in C or C++ codes, but not in Fortran codes. In
Fortran they are stored as comments but sometimes
are misplaced, which changes the parallel semantics
of the program. We had to trick Rose by make them
appear as function calls –not an elegant solution– but
one that preserves the semantics. We plan to change
this in the future.

• Rose creates a sort of header files for Fortran mod-
ules, but they do not store the semantics of the our
extension. The solution is to replace the Rose header
file with the one we generate in an intermediate stage.

Once the AST is built, the transformations are easy to
made, in terms of adding or deleting nodes and subtrees.

The translation of extended Fortran code into native Fortran
works as follows (see Figure 1):

1) A machine-dependent configuration file is parsed,
where the particular details of the platform are spec-
ified.

2) The DSL enriched Fortran code is parsed, the sym-
bol table and the intermediate representation, called
Abstract Syntax Tree (AST), are constructed, without
losing any information about the source code.

3) Before unparsing, the tree is modified to transform
the provided abstractions according to those particu-
larities of the platform.

4) As a final step, native Fortran code is generated by
traversing the modified tree.

V. EVALUATION

The original code was optimized initially for a vector
machine (NEC), but when the code was executed on current
cache based machines, there was a bottleneck in the memory
bandwidth. The machine-dependent file had to be tailored to
use an optimized memory layout for IBM Power6 and Intel
Westmere architectures. The memory layout was determined
manually to make a better use of the available cache levels.
However, different configurations were tried to find the correct
one, because there are several arrays with differences in
dimension and their corresponding loops. Further, the DSL
abstractions were applied on the ICON testbed code and a
synthetic test for the ICON dynamical core was used with a
configuration of 20480 cells x 78 levels. The DSL keyword

Fig. 2. Performance comparison between code with and without DSL
keywords for IBM Power 6 architecture

for inlining was not used. Finally, generated Fortran code was
compiled and executed on the mentioned architectures.

A. Power6 architecture

With the appropriate machine-specific configuration the ef-
ficiency of central data structures of ICON could be improved,
obtaining up to 17% of speedup (see table I and figure 2).

B. Intel Westmere architecture

For the case of Westemere, up to 16% of speedup was
obtained (see table II and figure 3).

On table III we can see the behavior of some hardware
counter groups for the Westmere architecture. These counters
were obtained using the Likwid Lightweight performance
tools[19]. Memory bandwidth was increased by 14% and the
miss rate of L1 and L2 caches were reduced by 68% and 20%
respectively. It is notable that the proper index interchanges
provided an reduction by 7% on the retired instructions counter
and by 6% on the cycles per instruction. This could be due to
the fact that continuous memory access provides more room
for compiler optimizations, for example, loop unrolling.

VI. ON GOING AND FUTURE WORK

In order to make full use of the ability to define the memory
access patterns, loop structures should also be abstracted. This
abstraction also targets to improve the expressiveness of the

Fig. 3. Performance comparison between code with and without DSL
keywords on a Intel Westmere architecture

DSL, in a way closer to the modelers’ domain. We are cur-
rently considering to use the notion of sets and subsets, which
is the natural mathematical construction for identifying indexed
based operations. Our goal is to use the DSL abstraction
to create a similar code but hiding the indexing details. An
example of such an abstraction is:

1 type (t i n t s t a t e) , i n t e n t (in) : : p t r i n t
2 r e a l (wp) , EDGES 3D , i n t e n t (in) : : vec e
3 i n t e n t (wp) , CELLS 3D , i n t e n t (i n o u t) : : d i v v e c c
4 SUBSET , CELLS 3D , i n t e n t (in) : : c e l l s s u b s e t
5 ELEMENT, CELLS 3D : : c e l l
6 ELEMENT, EDGES OF CELL : : edge
7

8 FOR c e l l in c e l l s s u b s e t DO
9 d i v v e c c (c e l l) = 0 . 0 wp

10 FOR edge in c e l l%edges DO
11 d i v v e c c (c e l l) = d i v v e c c (c e l l) + &
12 & vec e (edge) ∗ p t r i n t%g e o f a c d i v (edge)
13 END FOR
14 END FOR

Notice in the example code that the modeler will not make
use of explicit indexes on DSL loops, it is only necessary to
establish the corresponding sets and the operations among the
elements of the set. The notion of subsets has been already
implemented in the ICON ocean model in the form of Fortran
structures and looks like this:

1 type (t i n t s t a t e) , type (in) : : p t r i n t
2 r e a l (wp) , i n t e n t (in) : : vec e (: , : , :)
3 r e a l (wp) , i n t e n t (i n o u t) : : d i v v e c c (: , : , :)
4 type (t s u b s e t r a n g e 3 D) : : c e l l s s u b s e t
5 type (t g r i d c e l l s) , p o i n t e r : : c e l l c e l l s
6 i n t e g e r : : c e l l i d x s t a r t , c e l l i d x e n d , . . .
7 i n t e g e r : : e d g e c e l l i d x , edge idx , . . .

Cores 32 64 128 192

NO DSL iterations/sec 635479 1426037 2798150 3601217

DSL iterations/sec 719527 1664402 3096318 3993947

Speedup 13% 17% 11% 11%

TABLE I. ACHIEVED ITERATIONS PER CELLS PER SEC FOR DIFFERENT NUMBER OF CORES ON A IBM POWER6 ARCHITECTURE

Cores 2 4 8 12

NO DSL iterations/sec 41914 65937 61292 55209

DSL iterations/sec 48574 75521 68908 60927

Speedup 16% 14% 12% 10%

TABLE II. ACHIEVED ITERATIONS PER CELLS PER SEC FOR DIFFERENT NUMBER OF CORES ON A INTEL WESTMERE ARCHITECTURE

Performance Counter NO DSL DSL Improvement

Retired instructions 1.68322e+12 1.5579e+12 7% reduction

Cycles per instruction 0.546809 0.514415 6% reduction

L1 cache misses rate 0.0170913 0.00532005 68% reduction

L2 cache misses rate 0.00518718 0.00410406 20% reduction

Memory bandwidth (MB/sec) 1221.44 1422.61 14% increase

TABLE III. PERFORMANCE COUNTERS ON A INTEL WESTMERE ARCHITECTURE

8

9 c e l l c e l l s => c e l l s s u b s e t%c e l l s
10

11 DO c e l l b l o c k = c e l l s s u b s e t%s t a r t b l o c k , &
12 & c e l l s s u b s e t%end b lock
13 . . .
14 DO c e l l i d x = c e l l i d x s t a r t , c e l l i d x e n d
15 . . .
16 DO c e l l l e v e l = c e l l s s u b s e t%s t a r t l e v e l , &
17 & c e l l s s u b s e t%e n d l e v e l
18 . . .
19 d i v v e c c (c e l l l e v e l , c e l l i d x , c e l l b l o c k) = 0 . 0 wp
20 . . .
21 DO e d g e c e l l i d x = 1 , c e l l c e l l s%num edges (c e l l i d x , &
22 & c e l l b l o c k)
23 . . .
24 d i v v e c c (c e l l l e v e l , c e l l i d x , c e l l b l o c k) = . . .
25 . . .
26 ENDDO
27 ENDDO
28 ENDDO
29 ENDDO

As seen on the example code, at translation time, all the
indexing information will be written, and the DSL loops will
be transformed into 4 nested Fortran loops. This will also
give the opportunity for automatic parallelization, for example,
by inserting OpenMP pragmas around the outermost loop.
Emerging architectures based on accelerators or heterogeneous
hardware can be targeted for example by using annotations
of the type of OpenACC. Specific architectures like Nvidia
accelerators can be targeted by creating CUDA kernels from
the generated loops. It is notable that this approach provides

the ability to easily shape the actual array dimensions to meet
the requirements for different levels of parallelism (blocks,
thread groups, threads, vectors, etc.).

The syntax for such new features is currently under
evaluation and discussion in the ICON development group.

Performance keeps being a key driver for the development
of the DSL; heterogeneity in current hardware architectures
makes totally feasible that fixed memory layouts could
not benefit from different memory schemes in the same
platform. Hence, an important upgrade for the translator is
the enhancement of keywords related to index interchange to
encode more than one swapping possibilities and the ability
to select the correct exchange and memory representation
according to the execution context.

Moreover, optimizers should be extended to permit code
to explode better the advantages of emerging accelerator
architectures; therefore and in opposite to inlining, code
outlining can be helpful to consistently separate blocks of
code with computation intensity that can be optimally mapped
as kernels into those accelerators.

VII. CONCLUSION

We have presented ICON DSL as a Fortran extension
that eases the modeling process for the climate expert, allows
code portability and facilitates performance improvement. The
strength of this approach relies on the fact that there is no
need to learn a new language, because new keywords can
be assimilated easily into existing Fortran code. With the
proposed DSL features, array declarations and initializers can
take advantage of memory layout abstractions while subroutine
calls can be easily optimized by being inlined. Automatically
generated code exhibited a significant improvement on IBM
Power6 and Intel Westmere architectures when the appropriate
set of index interchanges were expressed in the configuration
file of the DSL.

ACKNOWLEDGMENT

This work is conducted within the frame of Work Package
2 in the ICOMEX project. ICOMEX is funded by the DFG as
a part of the G8Initiative (GZ: LU 1353/51, LI 2125/11, ZA
268/91). Raul Torres would like to acknowledge the support
from Colciencias.

REFERENCES

[1] W. Washington, “Challenges in climate change science and the role of
computing at the extreme scale,” in Proc. of the Workshop on Climate
Science, 2008.

[2] G. Zaengl, “The icosahedral nonhydrostatic (icon) model: formulation
of the dynamical core and physics-dynamics coupling,” Multiscale
Numerics for the Atmosphere and Ocean at Isaac Newton Institute for
Mathematical Sciences, September 2012.

[3] A. V. Deursen, P. Klint, and J. Visser, “Domain-specific languages: An
annotated bibliography,” ACM SIGPLAN NOTICES, vol. 35, pp. 26–36,
2000.

[4] N. Oliveira, M. J. ao Varanda Pereira, P. R. Henriques, and D. da Cruz,
“Domain-Specic Languages - A Theoretical Survey,” in Proceedings of
the 3rd Compilers, Programming Languages, Related Technologies and
Applications (CoRTA’2009), 2009, pp. 35–46.

[5] M. Fowler, Domain-specific languages, Addison-Wesley, Ed. Addison-
Wesley, 2011.

[6] S. Guyer and C. Lin, “Broadway: A compiler for exploiting the domain-
specific semantics of software libraries,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 342–357, 2005.

[7] R. A. V. Engelen, “Atmol: A domain-specific language for atmospheric
modeling,” the Journal of Computing and Information Technology,
vol. 4, pp. 289–303, 2002.

[8] R. van Engelen, L. Wolters, and G. Cats, “Ctadel: a generator
of multi-platform high performance codes for pde-based scientific
applications,” in Proceedings of the 10th international conference on
Supercomputing, ser. ICS ’96. New York, NY, USA: ACM, 1996, pp.
86–93. [Online]. Available: http://doi.acm.org/10.1145/237578.237589

[9] P. Unden, L. Rontu, H. Jrvinen, P. Lynch, J. Calvo, G. Cats, J. Cuxart,
K. Eerola, C. Fortelius, J. A. Garcia-Moya, C. Jones, Geert, G. Lender-
link, A. Mcdonald, R. Mcgrath, B. Navascues, N. W. Nielsen, V. De-
gaard, E. Rodriguez, M. Rummukainen, K. Sattler, B. H. Sass, H. Sav-
ijarvi, B. W. Schreur, R. Sigg, and H. The, HIRLAM-5 Scientific
Documentation, 2002.

[10] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos,
E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso,
and P. Hanrahan, “Liszt: a domain specific language for building
portable mesh-based pde solvers,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 9:1–9:12.
[Online]. Available: http://doi.acm.org/10.1145/2063384.2063396

[11] T. D. Han and T. S. Abdelrahman, “hicuda: a high-level directive-based
language for gpu programming,” in Proceedings of 2nd Workshop
on General Purpose Processing on Graphics Processing Units, ser.
GPGPU-2. New York, NY, USA: ACM, 2009, pp. 52–61. [Online].
Available: http://doi.acm.org/10.1145/1513895.1513902

[12] D. Unat, X. Cai, and S. B. Baden, “Mint: realizing cuda performance
in 3d stencil methods with annotated c,” in Proceedings of the
international conference on Supercomputing, ser. ICS ’11. New
York, NY, USA: ACM, 2011, pp. 214–224. [Online]. Available:
http://doi.acm.org/10.1145/1995896.1995932

[13] P. Messmer, “Porting cosmo to hybrid architectures,” Programming
weather, climate, and earth-system models on heterogeneous multi-core
platforms, September 2012.

[14] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

[15] J. R. Cordy, “The txl source transformation language,” Sci. Comput.
Program., vol. 61, no. 3, pp. 190–210, Aug. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2006.04.002

[16] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[17] D. Quinlan, “Rose: Compiler support for object-
oriented frameworks,” Parallel Processing Letters, vol. 10,
no. 02n03, pp. 215–226, 2000. [Online]. Available:
http://www.worldscientific.com/doi/abs/10.1142/S0129626400000214

[18] ROSE User Manual, Lawrence Livermore National Laboratory, Liver-
more, CA 94550, July 2013.

[19] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Proceedings of the 2010 39th International Conference on Parallel
Processing Workshops, 2010.

