Optimal Placement of Retry-Based Fault Recovery
Annotations in HPC Applications

gn Center for
Materials in Extreme Environments

Ignacio Laguna, Martin Schulz, Jeff Keasler, David Richards, Jim Belak

Lawrence Livermore National Laboratory
Main contact: ilaguna@linl.gov

Motivation Annotations are Required to Express Recovery Scope Sample Application: LULESH

| Shock hydrodynamics problem
* Mean-time-between-failures may increase in future HPC systems Programmer annotates (or protect) code block

 |fafault occurs, a code block is re-executed
* We may not rely only on the checkpoint/restart approach » The decision on where to place annotations is critical or large overheads can occur
* No research work has evaluated how to optimally place these annotations

How do we annotate the code?

* Retry-based methods allow recovery by re-trying a code region maigg) 1 4 ny
Original code Annotated code whi{gg EO €...
* Two retry-based approaches: void function(double *array) void function(double *array) functl();
(1) Identify or create idempotent code (i.e., code where re- { { funct2(Q);
execution is free of side effects) for (...) . RETRY{ funct3();
_ . _ o array[i] = array[i-1] + ... for (...) 1
(2) Place retry annotations (involves micro-checkpointing data) } array[i] = array[i-1] + ... 1
However, how do we place optimally these annotations? }
}
Overview of Existing Fault Recovery Methods : : : : : :
8 y Re-executing the last n iterations of the main loop is optimal Method 1
1] main() {
Replication in Replication in Method 1 performs surprisingly well for low fault rate | pain0,
. — while() {
Space Time 55 - . functi();
| funct2();
e Redundant multi-threading Checkpoint / Restart \ funct3(); | Method 2
e Rec undan.t VMs Retry idempotent code 5 - T R S ; main() {
 Lockstepping e Micro-checkpoint / Retry .) I 2 | RELELE_() {
Incur hardware overheads v ¢ RETRY {funct1();}
Inefficient for parallel codes S 18 - . ey gz:zgg;
= } Method 3
o ¢ ¢ } .
. ; } main() {
Assumptions for the Retry-Based Model 2 16 - . ’ | RETRY '{
. hil
Replication in Time = oy |
5 functl();
c c (G _ funct2();
= = é é E 1.4 funct3();
S S S S * Fault detection in hardware Q. 1 Method 4
S 2 2| 2 < } } ma'n-() {
<) 1
h - * Notifications of recoverable faults 1.2 } RETRY {
. (e via svnchronous tra 5) M e s e s X while() {
Operating system -6, VId 5y P XXX x> T T S B B x RETRY(n) {
1 | | | | functl();
. . . | ~ funct2();
D * Recovery at application level 0 5 10 15 50 >E N Idempotent f::zt38;
Hardware . source code }
method (RAJA) }
% Fault Faults / hour ;

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-641574

