
Optimizing User Oriented Job Scheduling within TORQUE

Dalibor Klusáček†*

klusacek@cesnet.cz
Václav Chlumský†*

vchlumsky@cesnet.cz
Hana Rudová*

hanka@fi.muni.cz
*Faculty of Informatics †CESNET

Masaryk University Association of Legal Entities
Brno, Czech Republic Prague, Czech Republic

ABSTRACT
We presents major extension of the widely used TORQUE
Resource Manager. Unlike common resource managers that
use queuing approach, our solution uses planning (job sched-
ule construction) and schedule optimization in order to achie-
ve better predictability, performance and fairness with re-
spect to common queue-based approaches. Moreover, addi-
tional important features are supported, e.g., so called multi
resource fairness that is used to fairly prioritize users subject
to their (highly) heterogeneous demands concerning various
system resources. Also, new textual and graphical interfaces
allow users to better control and plan computation of their
jobs. Our solution is currently undergoing experimental de-
ployment in Czech national Grid MetaCentrum.

1. INTRODUCTION
Job scheduling methods using planning and schedule opti-
mization have been studied in the past and their suitabil-
ity and better performance have been demonstrated with
respect to standard queue-based solutions, that are widely
used in Grid and cluster systems [5, 3]. However, many of
these works used simplified models together with a simula-
tor, while realistic and complex implementations in actual
mainstream resource managers were not available for various
reasons, e.g., due to huge complexity of such systems.

2. CONTRIBUTION
The main contribution of this work is that we have success-
fully developed a plan-based scheduling system within the
production TORQUE Resource Manager [1] system. Com-
pared to classical queue-based schedulers, our system sup-
ports several important features. First of all, it allows bet-
ter predictability as every job’s execution is plan ahead by
constructing job execution plan (job schedule). Next, such
a schedule is periodically optimized using metaheuristic in
order to improve schedule’s quality with respect to consid-
ered optimization criteria. Here we build upon our previ-
ous research on fast, multi-criteria optimization methods [3].

Both performance and fairness-related criteria are optimized.
We support so called multi resource fairness that properly
prioritize users of the system with respect to their (highly)
heterogeneous demands concerning system resources [2]. Fur-
thermore, we also provide new textual and graphical user
interfaces that allow users to better control and plan execu-
tion of their jobs. Prior deployment, our solution has been
experimentally evaluated, demonstrating good performance,
fairness and adequate accuracy of created schedules.

These features represent major benefits compared to classi-
cal queue-based techniques like backfilling where predictabil-
ity is typically very limited and scheduling decisions are nei-
ther evaluated nor further optimized with respect to various
optimization criteria.

3. APPLIED SOLUTION
Let us briefly describe the main parts of our solution.

3.1 New TORQUE Scheduler
The core part is the newly developed TORQUE scheduler
(see pbs_sched module in Figure 1) that contains complete
job schedule data structures and the schedule construction
algorithm which works in a backfill-like fashion, i.e., it adds
newly incoming jobs at the earliest available time slots in
the schedule. We emphasize realistic aspects by consider-
ing inaccurate job runtime estimates as well as complex job
characteristics including, e.g., RAM and HDD requirements
along with common CPU-related demands. Beside that,
there are new maintenance routines that adjust the sched-
ule in time subject to dynamic events such as (early) job
completions, machine failures, etc. Finally, pbs_sched hosts
newly developed schedule optimization algorithm which we
describe in Section 3.2.

3.2 Schedule Optimization
Thanks to the use of schedule, an expected start time is
known for every job prior its actual execution. Therefore,
the schedule can be periodically evaluated in order to iden-
tify possible inefficiencies. Then, a local search-inspired meta-
heuristic is used to produce better schedules with respect to
applied optimization criteria. We consider both performance
and fairness-related criteria. First of all, we minimize wait
time (WT), response time (RT) and bounded slowdown (SD)
to improve overall performance.

Moreover, user-to-user fairness is also optimized. We use a
per user metric called Normalized User Wait Time (NUWT).



Figure 1: Extended TORQUE Resource Manager.

For a given user, NUWT is the total user wait time divided
by the amount of previously consumed system resources
by that user. Then, the user-to-user fairness is optimized
by minimizing the mean and the standard deviation of all
NUWT values. Calculation of NUWT reflects consumption
of multiple resources as we explain in Section 3.3.

3.3 Multi Resource Fairness
In our solution we use recent multi resource-aware methods
to keep user-to-user fairness at a good level [2]. The solution
follows classical fairshare principles, i.e., a user with lower
resource usage and/or higher total wait time gets higher
priority over more active users and vice versa. Notably, the
solution reflects heterogeneous jobs’ demands concerning dif-
ferent system resources. It means that both CPU and RAM
consumption is taken into account when measuring given
user’s resource utilization. By using multi resource fairness
we can better react on users with (highly) heterogeneous
demands on available resources.

Figure 2 illustrates the importance of multi resource-based
fairness. It shows two variants of penalties (Z -axis) that
can be used for prioritizing users according to their relative
consumption of available CPU and RAM resources (X and
Y -axes). Single resource-based (CPU only) penalty is on the
left while multi resource-based (CPU and RAM) penalty is
on the right. Clearly, single resource-based penalty (left)
cannot properly penalize those users who, e.g., use (nearly)
all RAM but only a small fraction of available CPUs.

Figure 2: Examples of different penalties (Pj) distri-
butions wrt. CPU and RAM consumption.

3.4 User Interfaces
As the schedule increases predictability, our users can ob-
tain information about planned start times of their jobs us-

ing either textual or web-based interfaces. The first one
is an extended qstat command while the second one is a
newly developed web application. Both methods display
planned start times of waiting jobs by communicating with
the pbs_server (see Figure 1) that provides up-to-date in-
formation using current job schedule.

4. EVALUATION AND DEPLOYMENT
Prior an experimental deployment, the system has been eval-
uated using historic workloads from Czech National Grid
Infrastructure MetaCentrum [4], analyzing its performance,
fairness and the accuracy of start time predictions.

Compared to existing MetaCentrum scheduler, the average
wait time (WT), response time (RT) and bounded slowdown
(SD) have decreased by 73%, 26% and 74%, respectively.
Concerning fairness, we have used two indicators (see Sec-
tion 3.2) which are the mean NUWT and the std. deviation
of all NUWT values. Here, the average improvements has
been 55% and 34%, respectively. We have also measured
how accurate is a job’s initial start time prediction (estab-
lished when a job arrives in the system) with respect to its
real start time. Here we have observed that 33.8% of jobs
start earlier (typically due to earlier completions of preced-
ing jobs) and 48.5% start on time. There are 17.7% of jobs
that start later than were their initial predictions. In most
cases, this is a natural result of schedule optimization, which
(beside other factors) tries to improve user-to-user fairness.
To do that, jobs belonging to “low priority” users must be
delayed to improve performance for users with high priority.

The solution presented in this work is currently being exper-
imentally deployed in MetaCentrum. During this summer
it will be further tested by selected users and then it will
be freely available to users as an alternative to the current
queue-based solution. Our system can be freely obtained at:
http://www.metacentrum.cz/docs/pbts.

5. ACKNOWLEDGMENTS
We acknowledge the support provided by “Projects of Large
Infrastructure for Research, Development, and Innovations”
LM2010005 funded by the Ministry of Education, Youth,
and Sports of the Czech Republic and the support provided
by the grant No. P202/12/0306 of the Grant Agency of the
Czech Republic.

6. REFERENCES
[1] Adaptive Computing Enterprises, Inc. TORQUE

Admininstrator Guide, version 4.2.4, July 2013.
http://docs.adaptivecomputing.com.

[2] D. Klusáček, M. Jaroš, and H. Rudová. Multi resource
fairness: Problems and challenges. In Job Scheduling
Strategies for Parallel Processing, Boston, USA, 2013.

[3] D. Klusáček and H. Rudová. Efficient Grid scheduling
through the incremental schedule-based approach.
Computational Intelligence, 27(1):4–22, 2011.

[4] MetaCentrum, October 2013.
http://www.metacentrum.cz/.

[5] F. Xhafa and A. Abraham. Metaheuristics for
Scheduling in Distributed Computing Environments,
volume 146 of Studies in Computational Intelligence.
Springer, 2008.


