
Towards Benchmarking Graph-Processing Platforms

Yong Guo
TU Delft

The Netherlands
Yong.Guo@tudelft.nl

Marcin Biczak
TU Delft

The Netherlands
M.Biczak@tudelft.nl

Ana Lucia Varbanescu
University of Amsterdam

The Netherlands
A.L.Varbanescu@uva.nl

Alexandru Iosup
TU Delft

The Netherlands
A.Iosup@tudelft.nl

Claudio Martella
VU University Amsterdam

the Netherlands
claudio.martella@vu.nl

Theodore L. Willke
Systems Architecture Lab

Intel Corporation, USA
theodore.l.willke@intel.com

ABSTRACT
Graph-processing platforms are increasingly used in a va-
riety of domains. Although both industry and academia
are developing and tuning graph-processing algorithms and
platforms, the performance of graph-processing platforms
has never been explored or compared in-depth. Thus, users
face the daunting challenge of selecting an appropriate plat-
form for their specific application. To alleviate this chal-
lenge, we propose an empirical method for benchmarking
graph-processing platforms. We implement a benchmark-
ing suite, which includes a comprehensive process and a se-
lection of representative metrics, datasets, and algorithmic
classes. In our process, we focus on evaluating basic perfor-
mance, resource utilization, scalability, and overhead. Our
selection includes 5 classes of algorithms and 7 graphs. We
use our suite on 6 platforms and, besides valuable insights
gained for each platform, we also present the first compre-
hensive comparison of graph-processing platforms.

1. INTRODUCTION
Large-scale graphs are increasingly used in a variety of revenue-
generating applications, such as social applications, online
retail, business intelligence and logistics, and bioinformat-
ics [1, 3]. By analyzing the structure and characteristics of
graphs, analysts are able to predict the behavior of the cus-
tomer, and tune and develop new applications and services.
However, the diversity of the available graphs, of the pro-
cessing algorithms, and of the graph-processing platforms
currently available to analysts makes the selection of a plat-
form an important challenge; we address it here.

Although performance studies of individual platforms ex-
ist [4, 5], they have been so far restricted in scope and size.
New performance evaluation and benchmarking suites are
needed to respond to the three sources of diversity, that is,
to provide comparative information about the performance
and other non-functional characteristics of different plat-
forms, through the use of empirical methods and processes.

We propose an empirical performance-evaluation method
for (large-scale) graph-processing platforms. Our method
relies on defining a comprehensive evaluation process, and
on selecting representative datasets, algorithms, and met-
rics for evaluating important aspects of graph-processing
platforms—execution time, resource use, vertical and hor-
izontal scalability, and overhead. Using this method, we
create the equivalent of a benchmarking suite by selecting
and implementing five graph algorithms and seven large-
scale datasets from different application domains.

We implement our benchmarking suite on six popular plat-
forms currently used for graph processing—Hadoop, YARN,
Stratosphere, Giraph, GraphLab, and Neo4j—and conduct
a comprehensive performance study. Our work also aligns
with the goals and ongoing activity of the SPEC Research
Group and its Cloud Working Group, of which some of the
authors are members.

2. METHOD AND BENCHMARKING SUITE
FOR GRAPH-PROCESSING PLATFORMS

In this section we present an empirical method for evalu-
ating the performance of graph-processing platforms. Our
method includes four stages: identifying the performance
aspects and metrics of interest; defining and selecting rep-
resentative datasets and algorithms; implementing, config-
uring, and executing the tests; and analyzing the results.
Our approach exceeds previous performance evaluation and
benchmarking studies in both breadth and depth.

In this study, we focus on four performance aspects: Raw

processing power : the ability of a platform to (quickly) pro-
cess large-scale graphs. Resource use: the ability of a plat-
form to efficiently utilize the resources it has. Scalability :
the ability of a platform to maintain its performance behav-
ior when resources are added to its infrastructure. Overhead :
the part of wall-clock time the platform does not spend on
true data processing.

The main goal of the graph selection is to select graphs with
different characteristics but with comparable representation.
Table 1 shows a summary of the characteristics of the se-
lected graphs. The graphs have diverse sources, and a wide
range of different size and graph metrics.

We focus on algorithm functionality and select one exem-
plar of each of the following five algorithmic classes: general
statistics, graph traversal (used in Graph500), connected
components, community detection, and graph evolution. Gen-

Table 1: Summary of datasets.
Graphs #V #E d D̄ Size Directivity

G1 Amazon 262.1 K 1.2 M 1.8 4.7 18 MB directed

G2 WikiTalk 2.4 M 5.0 M 0.1 2.1 87 MB directed

G3 KGS 293.3 K 16.6 M 38.5 112.9 210 MB undirected

G4 Citation 3.8 M 16.5 M 0.1 4.4 297 MB directed

G5 DotaLeague 61.2 K 50.9 M 2,719.0 1,663.2 655 MB undirected

G6 Synth 2.4 M 64.2 M 2.2 53.6 964 MB undirected

G7 Friendster 65.6 M 1.8 B 0.1 55.1 31 GB undirected

d is the link density of the graphs (×10−5). D̄ is the average vertex degree of
undirected graphs and the average vertex in-degree (or average vertex out-degree)
of directed graphs.

Table 2: Selected platforms.
Platform Version Type Release date

Hadoop hadoop-0.20.203.0 Generic, Distributed 2011-05

YARN hadoop-2.0.3-alpha Generic, Distributed 2013-02

Stratosphere Stratosphere-0.2 Generic, Distributed 2012-08

Giraph Giraph 0.2 (revision 1336743) Graph, Distributed 2012-05

GraphLab GraphLab version 2.1.4434 Graph, Distributed 2012-10

Neo4j Neo4j version 1.5 Graph, Non-distributed 2011-10

eral statistics (STATS) computes the number of vertices and
edges and the average of the local clustering coefficient of all
vertices. Breadth-first search (BFS) is a widely used algo-
rithm in graph processing; it is often a building block for
more complex algorithm. Connected components (CONN)
is an algorithm for extracting groups of vertices that can
reach each other via graph edges. Community detection (CD)
is important for social network applications, to find groups
whose constituent nodes form more relationships within the
group than with nodes outside the group. Graph evolu-
tion (EVO) is an algorithm that can predict how a graph
structure will evolve over time.

3. EXPERIMENTAL RESULTS
In this section we create a full benchmarking suite, by imple-
menting the graph-processing algorithms of a selected set of
test platforms. Table 2 summarizes our selected platforms.
The complete results are available through our technical re-
port [2]. We present here a selection of the experimental
results. We use common best-practices for tuning each plat-
form. We deploy the tested platforms on 20 up to 50 com-
puting machines of our multi-cluster DAS4.

We present here the results of the execution time obtained
for running one selected algorithm (BFS), in Figure 1. Hadoop
always performs worse than the other platforms, mainly be-
cause Hadoop has a significant I/O between two continuous
iterations. Stratosphere’s ability to optimize the execution
plan based on code annotations regarding data sizes and
flows, its programming model, and the much more efficient
use of the network channel make it perform much better
than Hadoop and YARN. In contrast to the generic data-
processing platforms, for Giraph and GraphLab the input
graphs are read only once, and then stored and processed
in-memory. Both Giraph and GraphLab realize a dynamic
computation mechanism, by which only selected vertices will
be processed in each iteration. A two-level main-memory
cache allows Neo4j to achieve excellent hot-cache execution
times, especially when the graph data accessed by the algo-
rithms fits in the cache.

For testing horizontal scalability, we increase the number
of machines from 20 to 50 by a step of 5, and keep us-
ing a single computing core per machine. We use the BFS
algorithm and the two largest real graphs, Friendster and
DotaLeague for this experiments (Figure 2). Most of the
platforms presents significant horizontal scalability only for
Friendster, except for GraphLab, which exhibits little scala-

100

101

102

103

104

Amazon

WikiTalk

KGS
Citation

DotaLeague

Synth
Friendster

1 min

15 mins

1 hour

E
xe

cu
tio

n
tim

e
[s

]

Datasets

Giraph
Stratosphere

Hadoop

YARN
GraphLab

Neo4j

Figure 1: The execution time of algorithm BFS of
all datasets of all platforms.

 0

 2000

 4000

 6000

 8000

 20 25 30 35 40 45 50

E
xe

cu
tio

n
tim

e
[s

]

machines

Hadoop
Stratosphere

GraphLab

GraphLab(mp)
Giraph

 0

 100

 200

 300

 400

 20 25 30 35 40 45 50

E
xe

cu
tio

n
tim

e
[s

]

machines

Hadoop
Stratosphere

GraphLab

GraphLab(mp)
Giraph
YARN

Figure 2: The horizontal scalability of processing G7
(left) and G5 (right).

bility for both datasets. The horizontal scalability of GraphLab
is constrained by the graph loading phase using one single
file. We thus explore tuning GraophLab: for GraphLab(mp)
we split the input file into multiple separate pieces, as many
as the MPI processes. GraphLab(mp) has much lower exe-
cution time than GraphLab, for both datasets.

4. CONCLUSION
A quickly increasing number of data-intensive platforms can
process large-scale graphs, and have thus become potentially
interesting for a variety of users and application domains.
To compare in-depth the performance of graph-processing
platforms, and thus facilitate platform selection and tun-
ing, we have proposed in this work an empirical method
and applied it to a comprehensive performance study of six
graph-processing platforms.

Our method defines an empirical performance evaluation
process and selects metrics, datasets, and algorithms; thus,
it acts as a benchmarking suite despite not covering all the
methodological and practical aspects of a true benchmark.
Using our method, we have conducted a first detailed, com-
prehensive, real-world performance evaluation of six popular
platforms for graph-processing. Our results show quantita-
tively and comparatively the highlights and weaknesses of
the tested platforms.

5. REFERENCES
[1] Y. Guo and A. Iosup. The Game Trace Archive. In

NetGames, 2012.

[2] Y. Guo, et al. PDS-2013-004, Delft University of
Technology. http://www.pds.ewi.tudelft.nl/
research-publications/technical-reports/2013/.

[3] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over Time: Densification Laws, Shrinking Diameters
and Possible Explanations. In ACM SIGKDD, 2005.

[4] Y. Low, et al. Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud. In
VLDB, 2012.

[5] D. Warneke and O. Kao. Nephele: Efficient Parallel
Data Processing in the Cloud. In MTAGS, 2009.

