Extreme-scale space-time parallelism
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I. INTRODUCTION

For time-dependent partial differential equations, tempo-
ral parallelization has been shown to be an attractive way
to introduce a new dimension of concurrency in addition
to spatial mesh decomposition approaches already widely
used. This paper presents scaling results for the time-parallel
“parallel full approximation scheme in space and time”
(PFASST) [1], [2] algorithm combined with a parallel multi-
grid method (PMG) [3] in space. We present strong scaling
of PMG+PFASST for runs using all 448K cores of the IBM
Blue Gene/Q JUQUEEN at Jiilich Supercomputing Centre
which goes far beyond existing results in [4]. The presented
experiments are by far the largest runs of a space-time parallel
method in terms of cores used and significantly exceed the
256K cores used in the previous record in [5].

II. NUMERICAL ALGORITHMS

Collocation methods for the integration of initial value
problems advance the solution over a time interval [T™, T"1]
by approximating the integral in the Picard formulation
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using numerical quadrature. For Gauss-type collocation nodes,

spectral deferred corrections (SDC) [6] are an attractive ap-

proach to iteratively solve the nonlinear collocation system

arising from the approximation of (1). SDC uses a low-order

method, typically an explicit and/or implicit Euler scheme,

to perform multiple “sweeps”, with each sweep raising the

formal order of accuracy of the method, up to the order of the
collocation method.

Classical SDC methods only sweep over one set of col-
location nodes. In multi-level SDC (MLSDC) [7], sweeps
are performed along a hierarchy of space-time meshes, with
coarser levels using fewer collocation nodes as well as a
coarser spatial discretization. Figure 1a sketches such a space-
time mesh hierarchy: On the finest level (red), there are five
collocation nodes and a high-resolution spatial discretization.
On the intermediate level (blue), the number of collocation
nodes is reduced to three and the spatial mesh is also coarser.
The coarsest level (grey) features only two collocation nodes
and, in the sketch, a spatial mesh with four nodes only.
Interpolation and restriction operators are employed to transfer

T Tn+1

- ,
:
/iy Y7/ 117

(a) 3-level MLSDC with space-time coarsening (time-serial)
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(b) 3-level PFASST with space-time coarsening (time-parallel)

Fig. 1: Graphical sketch of the space-time mesh hierarchy used
in MLSDC (upper). PFASST (lower) iterates concurrently on
multiple time-slices and sends updated initial values forward
in time after each sweep.

the solution between meshes while a FAS correction allows the
solution on the coarser levels to converge up to an accuracy
governed by the discretization on the finest level, see [7].

The “parallel full approximation scheme in space and time”
(PFASST) [1], [2] can be understood as a time-parallel vari-
ant of MLSDC. It performs MLSDC iterations concurrently
on multiple time intervals while frequently sending updated
initial values forward in time. Figure 1b sketches the mesh
hierarchy of PFASST: A time-slice [T, T""!] is assigned to
a processor P,, which runs MLSDC on this interval. Initial
values on each processor are generated by propagating the
initial value using a number of sweeps on the coarse level,
similar to the initialization phase in Parareal [8]. On each
level, after a sweep is completed, an updated initial value is
sent to the processor handling the next time-slice, but blocking
communication is required on the coarsest level only, so that
PFASST requires minimal synchronicity between the different
time-slices, see [9].

To solve the linear problem arising in each step of the
implicit-explicit Euler method during the sweeps of SDC or
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Fig. 2: Total speedup of time-serial PMG+SDC for the coarse
problem (light blue), the fine problem (dark blue) and the
space-time parallel combination PMG+PFASST (red).

64K 112K 224K 448K

BlueGene/Q JUQUEEN

Time-ranks  Speedup  Efficiency
2 2.16 108%
4 3.97 99%
7 6.20 89%
14 9.65 69%
28 15.12 54%

TABLE I: Speedup and efficiency of the temporal paralleliza-
tion. For the problem studied here, PFASST at first requires
fewer iterations than the time-serial SDC reference, leading to
the better-than-ideal speedup on two time-ranks.

PFASST, a parallel multi-grid method is employed, see [3]
for general features. A discussion of PMG in the context of
MLSDC can be found in [7].

III. SPACE-TIME PARALLEL SCALING ON JUQUEEN

The benchmark problem considered here is the three dimen-
sional heat equation with a forcing term as described in [4].
A method of lines approach is employed, discretizing in space
first, using 5113 nodes and a fourth order compact stencil for
the Laplacian on the fine level and 2553 nodes and a second
order stencil on the coarse level. The resulting initial value
problem is then solved with PFASST, employing 5 collocation
nodes on the fine and 3 collocation nodes on the coarse level.

Figure 2 shows the scaling of PMG+PFASST (red). These
runs use PMG with a fixed number of 16K cores in space
times 1, 2, 4, 7, 14 and 28 cores in time for PFASST,
so that the largest run uses 28 x 16K = 448K cores and
thus the full JUQUEEN machine. For comparison, scaling of
standalone PMG, that is time-serial, single-level SDC with
spatial parallelization only is also shown (blue). Both, the
time-serial SDC as well as the time-parallel PFASST iterations
use a threshold for the residual of 1.0 x 1071, leading to a
relative error of 1.1 x 1071,

The solid grey line indicates the theoretical speedup esti-
mate for PFASST, see e.g. [5] for the formula. The speedup
provided by PFASST is very close to the theoretical estimate,
demonstrating again that PFASST can efficiently be used
even in extreme-scale parallel runs. Although stand-alone
PMG scales quite well up to the full 448K cores, the space-
time parallel solver combining PFASST and PMG features
significantly improved strong scaling: On the full machine,

PMG+PFASST provides about a factor of three better speedup
than the PMG+SDC run using all cores for spatial paralleliza-
tion only. Also, because of the aggressive coarsening in space
on the higher levels, the efficiency of PFASST even in the
very large scale runs is still better than 50%, see Table 1.

IV. SUMMARY

The poster presents scaling results of a combination of the
time-parallel “parallel full approximation scheme in space and
time” (PFASST) with a parallel multi-grid (PMG) method in
space. It is shown that the combined space and time parallel
approach significantly improves strong scaling compared to
standalone PMG. Timings from runs on the full IBM Blue
Gene/Q JUQUEEN using up to 448K cores are reported,
setting a new record for the number of cores employed in
a space-time parallel simulation.
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