SC13 Home > SC13 Schedule > SC13 Presentation - A Data-Centric Profiler for Parallel Programs

SCHEDULE: NOV 16-22, 2013

When viewing the Technical Program schedule, on the far righthand side is a column labeled "PLANNER." Use this planner to build your own schedule. Once you select an event and want to add it to your personal schedule, just click on the calendar icon of your choice (outlook calendar, ical calendar or google calendar) and that event will be stored there. As you select events in this manner, you will have your own schedule to guide you through the week.

A Data-Centric Profiler for Parallel Programs

SESSION: Parallel Performance Tools


TIME: 1:30PM - 2:00PM

SESSION CHAIR: Shirley Moore

AUTHOR(S):Xu Liu, John Mellor-Crummey


It is difficult to manually identify opportunities for enhancing data locality. To address this problem, we extended the HPCToolkit performance tools to support data-centric profiling of scalable parallel programs. Our tool uses hardware counters to directly measure memory access latency and attributes latency metrics to both variables and instructions. Different hardware counters provide insight into different aspects of data locality (or lack thereof). Unlike prior tools for data-centric analysis, our tool employs scalable measurement, analysis, and presentation methods that enable it to analyze the memory access behavior of scalable parallel programs with low runtime and space overhead. We demonstrate the utility of HPCToolkit's new data-centric analysis capabilities with case studies of five well-known benchmarks. In each benchmark, we identify performance bottlenecks caused by poor data locality and demonstrate non-trivial performance optimizations enabled by this guidance.

Chair/Author Details:

Shirley Moore (Chair) - University of Texas El Paso

Xu Liu - Rice University

John Mellor-Crummey - Rice University

Add to iCal  Click here to download .ics calendar file

Add to Outlook  Click here to download .vcs calendar file

Add to Google Calendarss  Click here to add event to your Google Calendar

The full paper can be found in the ACM Digital Library