SC13 Home > SC13 Schedule > SC13 Presentation - A Scalable, Efficient Scheme for Evaluation of Stencil Computations over Unstructured Meshes

SCHEDULE: NOV 16-22, 2013

When viewing the Technical Program schedule, on the far righthand side is a column labeled "PLANNER." Use this planner to build your own schedule. Once you select an event and want to add it to your personal schedule, just click on the calendar icon of your choice (outlook calendar, ical calendar or google calendar) and that event will be stored there. As you select events in this manner, you will have your own schedule to guide you through the week.

A Scalable, Efficient Scheme for Evaluation of Stencil Computations over Unstructured Meshes

SESSION: Preconditioners and Unstructured Meshes


TIME: 1:30PM - 2:00PM


AUTHOR(S):James King, Mike Kirby


Stencil computations are a common class of operations that appear in many computational scientific and engineering applications. Stencil computations often benefit from compile-time analysis, exploiting data-locality, and parallelism. Post-processing of discontinuous Galerkin (dG) simulation solutions with B-spline kernels is an example of a numerical method which requires evaluating computationally intensive stencil operations over a mesh. Previous work on stencil computations has focused on structured meshes, while giving little attention to unstructured meshes. Performing stencil operations over an unstructured mesh requires sampling of heterogeneous elements which often leads to inefficient memory access patterns and limits data locality/reuse. In this paper, we present an efficient method for performing stencil computations over unstructured meshes which increases data-locality and cache efficiency, and a scalable approach for stencil tiling and concurrent execution. We provide experimental results in the context of post-processing of dG solutions that demonstrate the effectiveness of our approach.

Chair/Author Details:

George Biros (Chair) - University of Texas at Austin

James King - University of Utah

Mike Kirby - University of Utah

Add to iCal  Click here to download .ics calendar file

Add to Outlook  Click here to download .vcs calendar file

Add to Google Calendarss  Click here to add event to your Google Calendar

The full paper can be found in the ACM Digital Library